Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The virome of the last eukaryotic common ancestor and eukaryogenesis

Subjects

Abstract

All extant eukaryotes descend from the last eukaryotic common ancestor (LECA), which is thought to have featured complex cellular organization. To gain insight into LECA biology and eukaryogenesis—the origin of the eukaryotic cell, which remains poorly understood—we reconstructed the LECA virus repertoire. We compiled an inventory of eukaryotic hosts of all major virus taxa and reconstructed the LECA virome by inferring the origins of these groups of viruses. The origin of the LECA virome can be traced back to a small set of bacterial—not archaeal—viruses. This provenance of the LECA virome is probably due to the bacterial origin of eukaryotic membranes, which is most compatible with two endosymbiosis events in a syntrophic model of eukaryogenesis. In the first endosymbiosis, a bacterial host engulfed an Asgard archaeon, preventing archaeal viruses from entry owing to a lack of archaeal virus receptors on the external membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The LECA virome.
Fig. 2: Viromes of prokaryotes and eukaryotes.
Fig. 3: Bacterial roots of the LECA virome.
Fig. 4: Eukaryogenesis and eukaryovirogenesis.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell 6th edn (Garland Science, 2022).

  2. Gabaldon, T. Origin and early evolution of the eukaryotic cell. Annu. Rev. Microbiol. 75, 631–647 (2021).

    Article  PubMed  Google Scholar 

  3. Munoz-Gomez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).

    Article  PubMed  Google Scholar 

  4. Nobs, S. J., MacLeod, F. I., Wong, H. L. & Burns, B. P. Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life? Trends Microbiol. 30, 421–431 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Garcia, P. & Moreira, D. Open questions on the origin of eukaryotes. Trends Ecol. Evol. 30, 697–708 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lopez-Garcia, P., Eme, L. & Moreira, D. Symbiosis in eukaryotic evolution. J. Theor. Biol. 434, 20–33 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koonin, E. V. et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 5, R7 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Spang, A., Spang, E. F. & Ettema, T. J. G. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357, eaaf3883 (2017).

    Article  PubMed  Google Scholar 

  10. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Lombard, J., Lopez-Garcia, P. & Moreira, D. The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Garcia, P. & Moreira, D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem. Sci. 24, 88–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Lopez-Garcia, P. & Moreira, D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Koonin, E. V. et al. Global organization and proposed megataxonomy of the virus world. Microbiol. Mol. Biol. Rev. 84, e00061-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. International Committee on Taxonomy of Viruses Executive Committee The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks. Nat. Microbiol. 5, 668–674 (2020).

    Article  CAS  Google Scholar 

  18. Krupovic, M., Dolja, V. V. & Koonin, E. V. The LUCA and its complex virome. Nat. Rev. Microbiol. 18, 661–670 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).

    Article  PubMed  Google Scholar 

  20. Lachnit, T., Thomas, T. & Steinberg, P. Expanding our understanding of the seaweed holobiont: RNA viruses of the red alga Delisea pulchra. Front. Microbiol. 6, 1489 (2015).

    PubMed  Google Scholar 

  21. Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Roux, S. et al. Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics. Nat. Commun. 8, 858 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Paez-Espino, D. et al. Diversity, evolution, and classification of virophages uncovered through global metagenomics. Microbiome 7, 157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kinsella, C. M. et al. Entamoeba and Giardia parasites implicated as hosts of CRESS viruses. Nat. Commun. 11, 4620 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Charon, J., Murray, S. & Holmes, E. C. Revealing RNA virus diversity and evolution in unicellular algae transcriptomes. Virus Evol. 7, veab070 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schulz, F., Abergel, C. & Woyke, T. Giant virus biology and diversity in the era of genome-resolved metagenomics. Nat. Rev. Microbiol. 20, 721–736 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Dolja, V. V. & Koonin, E. V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 244, 36–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Csuros, M. & Miklos, I. Streamlining and large ancestral genomes in archaea inferred with a phylogenetic birth-and-death model. Mol. Biol. Evol. 26, 2087–2095 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cohen, O., Ashkenazy, H., Belinky, F., Huchon, D. & Pupko, T. GLOOME: gain loss mapping engine. Bioinformatics 26, 2914–2915 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Krupovic, M. et al. Cressdnaviricota: a virus phylum unifying seven families of Rep-encoding viruses with single-stranded, circular DNA genomes. J. Virol. 94, 00582-20 (2020).

    Article  Google Scholar 

  31. Krupovic, M. & Koonin, E. V. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13, 105–115 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Fischer, M. G. The virophage family Lavidaviridae. Curr. Issues Mol. Biol. 40, 1–24 (2021).

    Article  PubMed  Google Scholar 

  33. Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M. & Koonin, E. V. A novel group of diverse polinton-like viruses discovered by metagenome analysis. BMC Biol. 13, 95 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gaïa, M. et al. Mirusviruses link herpesviruses to giant viruses. Nature https://doi.org/10.1038/s41586-023-05962-4 (2023).

  35. Forgia, M. et al. Extant hybrids of RNA viruses and viroid-like elements. Preprint at bioRxiv https://doi.org/10.1101/2022.08.21.504695 (2022).

  36. Lee, B. D. et al. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell 186, 646–661.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Koonin, E. V., Senkevich, T. G. & Dolja, V. V. The ancient Virus World and evolution of cells. Biol. Direct 1, 29 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brown, J. R. & Doolittle, W. F. Archaea and the prokaryote-to-eukaryote transition. Microbiol. Mol. Biol. Rev. 61, 456–502 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Medvedeva, S. et al. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat. Microbiol. 7, 962–973 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Tamarit, D. et al. A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses. Nat. Microbiol. 7, 948–952 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rambo, I. M., Langwig, M. V., Leao, P., De Anda, V. & Baker, B. J. Genomes of six viruses that infect Asgard archaea from deep-sea sediments. Nat. Microbiol. 7, 953–961 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, Y. et al. Diversity, taxonomy, and evolution of archaeal viruses of the class Caudoviricetes. PLoS Biol. 19, e3001442 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wolf, Y. I. et al. Origins and evolution of the global RNA virome. mBio 9, e02329-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wolf, Y. I. et al. Doubling of the known set of RNA viruses by metagenomic analysis of an aquatic virome. Nat. Microbiol. 5, 1262–1270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Neri, U. et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185, 4023–4037.e18 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Krupovic, M. & Koonin, E. V. Multiple origins of viral capsid proteins from cellular ancestors. Proc. Natl Acad. Sci. USA 114, E2401–E2410 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gladyshev, E. A. & Arkhipova, I. R. A widespread class of reverse transcriptase-related cellular genes. Proc. Natl Acad. Sci. USA 108, 20311–20316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krupovic, M. & Koonin, E. V. Homologous capsid proteins testify to the common ancestry of retroviruses, caulimoviruses, pseudoviruses and metaviruses. J. Virol. 91, e00210-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Koonin, E. V., Dolja, V. V. & Krupovic, M. The logic of virus evolution. Cell Host Microbe 30, 917–929 (2022).

    Article  PubMed  Google Scholar 

  50. Kazlauskas, D., Varsani, A., Koonin, E. V. & Krupovic, M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. Nat. Commun. 10, 3425 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Villanueva, L., Damste, J. S. & Schouten, S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nat. Rev. Microbiol. 12, 438–448 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Hoshino, Y. & Gaucher, E. A. On the origin of isoprenoid biosynthesis. Mol. Biol. Evol. 35, 2185–2197 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Lopez-Garcia, P. & Moreira, D. Eukaryogenesis, a syntrophy affair. Nat. Microbiol. 4, 1068–1070 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rodrigues-Oliveira, T. et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 613, 332–339 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Keeling, P. J. The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64, 583–607 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Husnik, F. et al. Bacterial and archaeal symbioses with protists. Curr. Biol. 31, R862–R877 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Pittis, A. A. & Gabaldon, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gabaldon, T. Relative timing of mitochondrial endosymbiosis and the ‘pre-mitochondrial symbioses’ hypothesis. IUBMB Life 70, 1188–1196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hillman, B. I. & Cai, G. The family narnaviridae: simplest of RNA viruses. Adv. Virus Res. 86, 149–176 (2013).

    Article  PubMed  Google Scholar 

  63. Nibert, M. L., Vong, M., Fugate, K. K. & Debat, H. J. Evidence for contemporary plant mitoviruses. Virology 518, 14–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Philippe, C. et al. Bacteriophage GC1, a novel tectivirus infecting Gluconobacter cerinus, an acetic acid bacterium associated with wine-making. Viruses 10, 39 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Krupovic, M. & Koonin, E. V. Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci. Rep. 4, 5347 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Walker, P. J. et al. Recent changes to virus taxonomy ratified by the International Committee on Taxonomy of Viruses (2022). Arch. Virol. 167, 2429–2440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Edgar, R. C. et al. Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Zayed, A. A. et al. Cryptic and abundant marine viruses at the evolutionary origins of Earth’s RNA virome. Science 376, 156–162 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Koonin, E. V., Krupovic, M. & Dolja, V. V. The global virome: how much diversity and how many independent origins? Environ. Microbiol. 25, 40–44 (2023).

    Article  PubMed  Google Scholar 

  70. Krupovic, M. et al. Adnaviria: a new realm for archaeal filamentous viruses with linear A-form double-stranded DNA genomes. J. Virol. 95, e0067321 (2021).

    Article  PubMed  Google Scholar 

  71. Chang, W. S. et al. Novel hepatitis D-like agents in vertebrates and invertebrates. Virus Evol. 5, vez021 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gong, Z. & Han, G.-Z. Insect retroelements provide novel insights into the origin of hepatitis B viruses. Mol. Biol. Evol. 35, 2254–2259 (2018).

Download references

Acknowledgements

We thank P. López-García for invaluable, inspiring discussions and critical reading of the manuscript and S. Roux for helpful advice. E.V.K. is supported by funds from the Intramural Research Program of the National Institutes of Health (National Library of Medicine). V.V.D. was partially supported by a National Institutes of Health/National Library of Medicine/National Center for Biotechnology Information Visiting Scientist Fellowship. M.K. was supported by l’Agence Nationale de la Recherche grant ANR-21-CE11-0001-01.

Author information

Authors and Affiliations

Authors

Contributions

M.K., V.V.D. and E.V.K. researched and analysed the data and wrote the manuscript.

Corresponding authors

Correspondence to Mart Krupovic or Eugene V. Koonin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Susanne Erdmann, Jeremy Wideman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

The representation of virus phyla in major eukaryotic lineages.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krupovic, M., Dolja, V.V. & Koonin, E.V. The virome of the last eukaryotic common ancestor and eukaryogenesis. Nat Microbiol 8, 1008–1017 (2023). https://doi.org/10.1038/s41564-023-01378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-023-01378-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing