Proceedings of the Royal Society B: Biological Sciences

    Hemichordate worms possess ciliated gills on their trunk, and the homology of these structures with the pharyngeal gill slits of chordates has long been a topic of debate in the fields of evolutionary biology and comparative anatomy. Here, we show conservation of transcription factor expression between the developing pharyngeal gill pores of the hemichordate Saccoglossus kowalevskii and the pharyngeal gill slit precursors (i.e. pharyngeal endodermal outpockets) of vertebrates. Transcription factors that are expressed in the pharyngeal endoderm, ectoderm and mesenchyme of vertebrates are expressed exclusively in the pharyngeal endoderm of S. kowalevskii. The pharyngeal arches and tongue bars of S. kowalevskii lack Tbx1-expressing mesoderm, and are supported solely by an acellular collagenous endoskeleton and by compartments of the trunk coelom. Our findings suggest that hemichordate and vertebrate gills are homologous as simple endodermal outpockets from the foregut, and that much vertebrate pharyngeal complexity arose coincident with the incorporation of cranial paraxial mesoderm and neural crest-derived mesenchyme within pharyngeal arches along the chordate and vertebrate stems, respectively.

    References

    • 1
      Gee H. . 1996 Before the backbone: views on the origins of vertebrates. London, UK: Chapman and Hall. Google Scholar
    • 2
      Gans C.& Northcutt R. G. . 1983 Neural crest and the origin of vertebrates: a new head. Science 220, 268–273.doi: 10.1126/science.220.4594.268 (doi:10.1126/science.220.4594.268). Crossref, PubMed, ISIGoogle Scholar
    • 3
      Gans C. . 1989 Stages in the origin of vertebrates: analysis by means of scenarios. Biol. Rev. 64, 221–268.doi: 10.1111/j.1469-185X.1989.tb00471.x (doi:10.1111/j.1469-185X.1989.tb00471.x). Crossref, PubMed, ISIGoogle Scholar
    • 4
      Mallatt J. . 1996 Ventilation and the origin of jawed vertebrates: a new mouth. Zool. J. Linn. Soc. 117, 329–404.doi: 10.1111/j.1096-3642.1996.tb01658.x (doi:10.1111/j.1096-3642.1996.tb01658.x). Crossref, ISIGoogle Scholar
    • 5
      Mallatt J. . 1997 Crossing a major morphological boundary: the origin of jaws in vertebrates. Zool. Anal. Complex Syst. 100, 128–140. ISIGoogle Scholar
    • 6
      Northcutt R. G. . 2005 The new head hypothesis revisited. J. Exp. Zool. Part B 304, 274–297.doi: 10.1002/jez.b.21063 (doi:10.1002/jez.b.21063). CrossrefGoogle Scholar
    • 7
      Purnell M. A. . 2002 Feeding in extinct heterostracan fishes and testing scenarios of early vertebrate evolution. Proc. R. Soc. Lond. B 269, 83–88.doi: 10.1098/rspb.2001.1826 (doi:10.1098/rspb.2001.1826). Link, ISIGoogle Scholar
    • 8
      Bateson W. . 1885 The later stages in the development of B. kowaleskii, with a suggestion as to the affinities of the Enteropneusta. Quart. J. Microsc. Sci. 25((suppl.)), 81–122. Google Scholar
    • 9
      Clausen S.& Smith A. B. . 2005 Palaeoanatomy and biological affinities of a Cambrian deuterostome (Stylophora). Nature 43, 351–354.doi: 10.1038/nature04109 (doi:10.1038/nature04109). Crossref, ISIGoogle Scholar
    • 10
      Shu D., Morris S. C., Zhang Z. F., Liu J. N., Han J., Chen L., Zhang X. L., Yasui K.& Li Y. . 2003 A new species of Yunnanozoan with implications for deuterostome evolution. Science 299, 1380–1384.doi: 10.1126/science.1079846 (doi:10.1126/science.1079846). Crossref, PubMed, ISIGoogle Scholar
    • 11
      Hervé P., Brinkmann H., Copley R. R., Moroz L. L., Nakano H., Poustka A. J., Wallberg A., Peterson K. L.& Telford M. J. . 2011 Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature 470, 255–258.doi: 10.1038/nature09676 (doi:10.1038/nature09676). Crossref, PubMed, ISIGoogle Scholar
    • 12
      Swalla B. J.& Smith A. B. . 2008 Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Phil. Trans. R. Soc. B 363, 1557–1568.doi: 10.1098/rstb.2007.2246 (doi:10.1098/rstb.2007.2246). Link, ISIGoogle Scholar
    • 13
      Graham A. . 2001 The development and evolution of pharyngeal arches. J. Anat. 19, 133–141.doi: 10.1046/j.1469-7580.2001.19910133.x (doi:10.1046/j.1469-7580.2001.19910133.x). Crossref, ISIGoogle Scholar
    • 14
      Trainor P. A.& Tam P. P. L. . 1995 Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in the branchial arches. Development 121, 2569–2582. Crossref, PubMed, ISIGoogle Scholar
    • 15
      Hacker A.& Guthrie S. . 1998 A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125, 3461–3472. Crossref, PubMed, ISIGoogle Scholar
    • 16
      D'Amico-Martel A.& Noden D. M. . 1983 Contributions of placodal and neural crest cells to avian cranial peripheral ganglia. Am. J. Anat. 166, 445–468.doi: 10.1002/aja.1001660406 (doi:10.1002/aja.1001660406). Crossref, PubMedGoogle Scholar
    • 17
      Couly G.& LeDouarin N. M. . 1990 Head morphogenesis in embryonic avian chimeras: evidence for a segmental pattern in the ectoderm corresponding to the neuromeres. Development 108, 543–558. Crossref, PubMed, ISIGoogle Scholar
    • 18
      Noden D. M. . 1983 The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev. Biol. 96, 144–165.doi: 10.1016/0012-1606(83)90318-4 (doi:10.1016/0012-1606(83)90318-4). Crossref, PubMed, ISIGoogle Scholar
    • 19
      Couly G., Coltey P. M.& LeDouarin N. M. . 1993 The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429. Crossref, PubMed, ISIGoogle Scholar
    • 20
      LeDouarin N. M.& Jotereau F. V. . 1975 Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142, 17–40.doi: 10.1084/jem.142.1.17 (doi:10.1084/jem.142.1.17). Crossref, PubMed, ISIGoogle Scholar
    • 21
      Cordier A. C.& Haumont S. M. . 1980 Development of thymus, parathyroid and ultimobranchial bodies in NMRI and nude mice. Am. J. Anat. 157, 227–263.doi: 10.1002/aja.1001570303 (doi:10.1002/aja.1001570303). Crossref, PubMedGoogle Scholar
    • 22
      Rupert E. E. . 2005 Key characters uniting hemichordates and chordates: homologies or homoplasies? Can. J. Zool. 83, 8–23.doi: 10.1139/z04-158 (doi:10.1139/z04-158). Crossref, ISIGoogle Scholar
    • 23
      Gonzalez P.& Cameron C. B. . 2009 The gill slits and pre-oral ciliary organ of Protoglossus (Hemichordata: Enteropneusta) are filter-feeding structures. Biol. J. Linn. Soc. 98, 898–906.doi: 10.1111/j.1095-8312.2009.01332.x (doi:10.1111/j.1095-8312.2009.01332.x). Crossref, ISIGoogle Scholar
    • 24
      Pardos F.& Benito J. . 1988 Blood vessels and related structures in the gill bars of Glossobalanus minutus (Enteropneusta). Acta. Zool. (Stockholm) 68, 87–94.doi: 10.1111/j.1463-6395.1988.tb00905.x (doi:10.1111/j.1463-6395.1988.tb00905.x). CrossrefGoogle Scholar
    • 25
      Balser E. J.& Ruppert E. E. . 1990 Structure, ultrastructure, and function of the preoral heart-kidney in Saccoglossus kowalevskii (Hemichordata, Enteropneusta) including new data on the stomochord. Acta. Zool. (Stockholm) 71, 235–249.doi: 10.1111/j.1463-6395.1990.tb01082.x (doi:10.1111/j.1463-6395.1990.tb01082.x). CrossrefGoogle Scholar
    • 26
      Cole A. G.& Hall B. K. . 2004 The nature and significance of invertebrate cartilages revisited; distribution and histology of cartilage and cartilage-like tissue within the Metazoa. Zoology 107, 261–273.doi: 10.1016/j.zool.2004.05.001 (doi:10.1016/j.zool.2004.05.001). Crossref, PubMed, ISIGoogle Scholar
    • 27
      Rychel A. L., Smith S. E., Shimamoto S. T.& Swalla B. J. . 2006 Evolution and development of the chordates: collagen and pharyngeal cartilage. Mol. Biol. Evol. 23, 541–549.doi: 10.1093/molbev/msj055 (doi:10.1093/molbev/msj055). Crossref, PubMed, ISIGoogle Scholar
    • 28
      Rychel A. L.& Swalla B. J. . 2007 Development and evolution of chordate cartilage. J. Exp. Zool. Part B 308, 325–335.doi: 10.1002/jez.b.21157 (doi:10.1002/jez.b.21157). CrossrefGoogle Scholar
    • 29
      Xu P. X., Zheng W., Laclef C., Maire P., Maas R. L., Peters H.& Xu X. . 2002 Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129, 3033–3044. Crossref, PubMed, ISIGoogle Scholar
    • 30
      Wurdak H., Ittner L. M.& Sommer L. . 2006 DiGeorge syndrome and pharyngeal apparatus development. BioEssays 28, 1078–1086.doi: 10.1002/bies.20484 (doi:10.1002/bies.20484). Crossref, PubMed, ISIGoogle Scholar
    • 31
      Zou D., Silvius D., Davenport J., Grifone R., Maire P.& Xu X. . 2006 Patterning of the third pharyngeal pouch into thymus/parathyroid by Six and Eya1. Dev. Biol. 293, 499–512.doi: 10.1016/j.ydbio.2005.12.015 (doi:10.1016/j.ydbio.2005.12.015). Crossref, PubMed, ISIGoogle Scholar
    • 32
      Lowe C. J., Tagawa K., Humphreys T., Kirschner M.& Gerhart J. . 2004 Hemichordate embryos: procurement, culture, and basic methods. Method Cell. Biol. 74, 171–194.doi: 10.1016/S0091-679X(04)74008-X (doi:10.1016/S0091-679X(04)74008-X). Crossref, PubMed, ISIGoogle Scholar
    • 33
      Gillis J. A., Dahn R. D.& Shubin N. H. . 2009 Chondrogenesis and homology of the visceral skeleton in the little skate, Leucoraja erinacea (Chondrichthyes: Batoidea). J. Morphol. 270, 628–643.doi: 10.1002/jmor.10710 (doi:10.1002/jmor.10710). Crossref, PubMed, ISIGoogle Scholar
    • 34
      Kowalevsky A. . 1867 Entwickelungsgeschichte des Amphioxus lanceolatus. Mém. Acad. Imp. Sci. St. Petersb. (Sér. VII) 11, 1–17. Google Scholar
    • 35
      Neubüser A., Koseki H.& Balling R. . 1995 Characterizations and developmental expression of Pax9, a paired-box containing gene related to Pax1. Dev. Biol. 170, 701–716.doi: 10.1006/dbio.1995.1248 (doi:10.1006/dbio.1995.1248). Crossref, PubMed, ISIGoogle Scholar
    • 36
      Wallin J., Eibel H., Neubüser A., Wilting J., Koseki H.& Balling R. . 1996 Pax1 is expressed during development of the thymus epithelium and is required for normal T-cell maturation. Development 122, 23–30. Crossref, PubMed, ISIGoogle Scholar
    • 37
      Lowe C. J., Wu M., Salic A., Evans L., Lander E., Stange-Thomann N., Gruber C. E., Gerhart J.& Kirschner M. . 2003 Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113, 853–865.doi: 10.1016/S0092-8674(03)00469-0 (doi:10.1016/S0092-8674(03)00469-0). Crossref, PubMed, ISIGoogle Scholar
    • 38
      Ogasawara M., Wada H., Paters H.& Satoh N. . 1999 Developmental expression of Pax1/9 genes in urochordate and hemichordate gills: insight into function and evolution of the pharyngeal epithelium. Development 126, 2539–2550. Crossref, PubMed, ISIGoogle Scholar
    • 39
      Manley N. R.& Capecchi M. R. . 1995 The role of Hoxa-3 in mouse thymus and thyroid development. Development 121, 1989–2003. Crossref, PubMed, ISIGoogle Scholar
    • 40
      Wendling O., Dennefeld C., Chambon P.& Mark M. . 2000 Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 127, 1553–1562. Crossref, PubMed, ISIGoogle Scholar
    • 41
      Rossel M.& Capecchi M. R. . 1999 Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126, 5027–5040. Crossref, PubMed, ISIGoogle Scholar
    • 42
      Aronowicz J.& Lowe C. J. . 2006 Hox gene expression in the hemichordate S. kowalevskii and the evolution of deuterostome nervous systems. Integr. Comp. Biol. 46, 890–901.doi: 10.1093/icb/icl045 (doi:10.1093/icb/icl045). Crossref, PubMed, ISIGoogle Scholar
    • 43
      Chapman D. L., et al. 1996 Expression of the T-box family genes, Tbx1-Tbx5, during early mouse development. Dev. Dyn. 206, 379–390.doi: 10.1002/(SICI)1097-0177(199608)206:4<379::AID-AJA4>3.0.CO;2-F (doi:10.1002/(SICI)1097-0177(199608)206:4<379::AID-AJA4>3.0.CO;2-F). Crossref, PubMed, ISIGoogle Scholar
    • 44
      Jerome L. A.& Papaioannou V. E. . 2001 DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Nat. Genet. 27, 286–291.doi: 10.1038/85845 (doi:10.1038/85845). Crossref, PubMed, ISIGoogle Scholar
    • 45
      Yamagishi H., Maeda J., Hu T., McAnally J., Conway S. J., Kume T., Meyers E. N., Yamagishi C.& Srivastava D. . 2003 Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev. 17, 269–281.doi: 10.1101/gad.1048903 (doi:10.1101/gad.1048903). Crossref, PubMed, ISIGoogle Scholar
    • 46
      Kume T., Jiang H., Topczewska J. M.& Hogan B. L. M. . 2001 The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev. 15, 2470–2482.doi: 10.1101/gad.907301 (doi:10.1101/gad.907301). Crossref, PubMed, ISIGoogle Scholar
    • 47
      Seo S.& Kume T. . 2006 Forkhead transcription factors, Foxc1 and Foxc2, are required for the morphogenesis of the cardiac outflow tract. Dev. Biol. 296, 421–436.doi: 10.1016/j.ydbio.2006.06.012 (doi:10.1016/j.ydbio.2006.06.012). Crossref, PubMed, ISIGoogle Scholar
    • 48
      Wotton K. R., Mazet F.& Shimeld S. M. . 2008 Expression of FoxC, FoxF, FoxL1, and FoxQ1 genes in the dogfish Scyliorhinus canicula defines ancient and derived roles for fox genes in vertebrate development. Dev. Dyn. 237, 1590–1603.doi: 10.1002/dvdy.21553 (doi:10.1002/dvdy.21553). Crossref, PubMed, ISIGoogle Scholar
    • 49
      Holland L. Z.& Holland N. D. . 1996 Expression of AmphiHox-1 and AmphiPax-1 in amphioxus embryos treated with retinoic acid: insights into evolution and patterning of the chordate nerve cord and pharynx. Development 122, 1829–1838. Crossref, PubMed, ISIGoogle Scholar
    • 50
      Kozmik Z., et al. 2007 Pax-Six-Eya-Dach network during amphioxus development: conservation in vitro but context specificity in vivo. Dev. Biol. 306, 143–159.doi: 10.1016/j.ydbio.2007.03.009 (doi:10.1016/j.ydbio.2007.03.009). Crossref, PubMed, ISIGoogle Scholar
    • 51
      Chisaka O.& Capecchi M. R. . 1991 Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350, 473–479.doi: 10.1038/350473a0 (doi:10.1038/350473a0). Crossref, PubMed, ISIGoogle Scholar
    • 52
      Kameda Y., Nishimaki T., Takeichi M.& Chisaka O. . 2002 Homeobox gene Hoxa3 is essential for the formation of the carotid body in the mouse embryos. Dev. Biol. 247, 197–209.doi: 10.1006/dbio.2002.0689 (doi:10.1006/dbio.2002.0689). Crossref, PubMed, ISIGoogle Scholar
    • 53
      Schubert M., Yu J.-K., Holland N. D., Escriva H., Laudet V.& Holland L. Z. . 2005 Retinoic acid signaling acts via Hox1 to establish the posterior limit of the pharynx in the chordate amphioxus. Development 132, 61–73.doi: 10.1242/dev.01554 (doi:10.1242/dev.01554). Crossref, PubMed, ISIGoogle Scholar
    • 54
      Sauka-Spengler T., Le Mentec C., Lepage M.& Mazan S. . 2002 Embryonic expression of Tbx1, a DiGeorge syndrome candidate gene, in the lamprey Lampetra fluviatilis. Gene Exp. Patterns 2, 99–103.doi: 10.1016/S0925-4773(02)00301-5 (doi:10.1016/S0925-4773(02)00301-5). Crossref, PubMedGoogle Scholar
    • 55
      Mahadevan N. R., Horton A. C.& Gibson-Brown J. J. . 2004 Developmental expression of the amphioxus Tbx1/10 gene illuminates the evolution of vertebrate branchial arches and sclerotome. Dev. Genes Evol. 214, 559–566.doi: 10.1007/s00427-004-0433-1 (doi:10.1007/s00427-004-0433-1). Crossref, PubMed, ISIGoogle Scholar
    • 56
      Buchberger A., Schwarzer M., Brand T., Pabst O., Seidl K.& Arnold H. H. . 1998 Chicken winged-helix transcription factor cFKH-1 prefigures axial and appendicular skeletal structures during chicken embryogenesis. Dev. Dyn. 212, 94–101.doi: 10.1002/(SICI)1097-0177(199805)212:1<94::AID-AJA9>3.0.CO;2-Y (doi:10.1002/(SICI)1097-0177(199805)212:1<94::AID-AJA9>3.0.CO;2-Y). Crossref, PubMed, ISIGoogle Scholar
    • 57
      Iida K., et al. 1997 Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124, 4627–4638. Crossref, PubMed, ISIGoogle Scholar
    • 58
      Koster M., Dillinger K.& Knochel W. . 1998 Expression pattern of the winged helix factor XFD-11 during Xenopus embryogenesis. Mech. Dev. 76, 169–173.doi: 10.1016/S0925-4773(98)00123-3 (doi:10.1016/S0925-4773(98)00123-3). Crossref, PubMed, ISIGoogle Scholar
    • 59
      Winnier G. E., Kume T., Deng K., Rogers R., Bundy J., Raines C., Walter M. A., Hogan B. L.& Conway S. J. . 1999 Roles for the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles. Dev. Biol. 21, 418–431. Crossref, ISIGoogle Scholar
    • 60
      Müller T. S., Ebensperger C., Neubüser A., Koseki H., Balling R., Christ B.& Wilting J. . 1996 Expression of avian Pax1 and Pax9 is intrinsically regulated in the pharyngeal endoderm, but depends on environmental influences in the paraxial mesoderm. Dev. Biol. 178, 403–417.doi: 10.1006/dbio.1996.0227 (doi:10.1006/dbio.1996.0227). Crossref, PubMed, ISIGoogle Scholar
    • 61
      Hörstadius S.& Sellman S. . 1946 Experimentelle Untersuchungen über die Determination des knorpeligen Kopfskelletes bei Urodelen. Nov. Act. Reg. Soc. Scient. Ups. Ser. IV 13, 1–170. Google Scholar
    • 62
      Veitch E., Begbie J., Schilling T. F., Smith M. M.& Graham A. . 1999 Pharyngeal arch patterning in the absence of neural crest. Curr. Biol. 9, 1481–1484.doi: 10.1016/S0960-9822(00)80118-9 (doi:10.1016/S0960-9822(00)80118-9). Crossref, PubMed, ISIGoogle Scholar
    • 63
      Quinlan R., Gale E., Maden M.& Graham A. . 2002 Deficits in the posterior pharyngeal endoderm in the absence of retinoids. Dev. Dyn. 225, 54–60.doi: 10.1002/dvdy.10137 (doi:10.1002/dvdy.10137). Crossref, PubMed, ISIGoogle Scholar
    • 64
      Janvier P.& Arsenault M. . 2007 The anatomy of Euphanerops longaevus Woodward, 1900 an anaspid-like jawless vertebrate from the Upper Devonian of Miguasha, Quebec, Canada. Geodiversitas 29, 143–216. ISIGoogle Scholar