Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Restricted access

Methane and nitrous oxide in the ice core record

Eric Wolff

Eric Wolff

British Antarctic SurveyHigh Cross, Madingley Road, Cambridge CB3 0ET, UK

[email protected]

Google Scholar

Find this author on PubMed

and
Renato Spahni

Renato Spahni

Climate and Environmental Physics, Physics Institute, University of BernSidlerstrasse 5, 3012 Bern, Switzerland

Google Scholar

Find this author on PubMed

    Polar ice cores contain, in trapped air bubbles, an archive of the concentrations of stable atmospheric gases. Of the major non-CO2 greenhouse gases, methane is measured quite routinely, while nitrous oxide is more challenging, with some artefacts occurring in the ice and so far limited interpretation. In the recent past, the ice cores provide the only direct measure of the changes that have occurred during the industrial period; they show that the current concentration of methane in the atmosphere is far outside the range experienced in the last 650 000 years; nitrous oxide is also elevated above its natural levels. There is controversy about whether changes in the pre-industrial Holocene are natural or anthropogenic in origin. Changes in wetland emissions are generally cited as the main cause of the large glacial–interglacial change in methane. However, changing sinks must also be considered, and the impact of possible newly described sources evaluated. Recent isotopic data appear to finally rule out any major impact of clathrate releases on methane at these time-scales. Any explanation must take into account that, at the rapid Dansgaard–Oeschger warmings of the last glacial period, methane rose by around half its glacial–interglacial range in only a few decades. The recent EPICA Dome C (Antarctica) record shows that methane tracked climate over the last 650 000 years, with lower methane concentrations in glacials than interglacials, and lower concentrations in cooler interglacials than in warmer ones. Nitrous oxide also shows Dansgaard–Oeschger and glacial–interglacial periodicity, but the pattern is less clear.

    References

    • Arneth A, et al. 2007 Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction. Atmos. Chem. Phys. 7, 31–53. Crossref, ISIGoogle Scholar
    • Bernard S, Rockmann T.R, Kaiser J, Barnola J.M, Fischer H, Blunier T& Chappellaz J . 2006 Constraints on N2O budget changes since pre-industrial time from new firn air and ice core isotope measurements. Atmos. Chem. Phys. 6, 493–503. Crossref, ISIGoogle Scholar
    • Blunier T& Brook E.J . 2001 Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science. 291, 109–112.doi:10.1126/science.291.5501.109. . Crossref, PubMed, ISIGoogle Scholar
    • Blunier T, Chappellaz J.A, Schwander J, Barnola J.-M, Desperts T, Stauffer B& Raynaud D . 1993 Atmospheric methane record from a Greenland ice core over the last 1000 years. Geophys. Res. Lett. 20, 2219–2222. Crossref, ISIGoogle Scholar
    • Blunier T, Chappellaz J, Schwander J, Stauffer B& Raynaud D . 1995 Variations in atmospheric methane concentration during the Holocene epoch. Nature. 374, 46–49.doi:10.1038/374046a0. . Crossref, ISIGoogle Scholar
    • Bousquet P, et al. 2006 Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature. 443, 439–443.doi:10.1038/nature05132. . Crossref, PubMed, ISIGoogle Scholar
    • Broecker W.S& Stocker T.F . 2006 The Holocene CO2 rise: anthropogenic or natural?. EOS Trans. 87, 27 doi:10.1029/2006EO030002. . CrossrefGoogle Scholar
    • Brook E.J, Sowers T& Orchardo J . 1996 Rapid variations in atmospheric methane concentration during the past 110,000 years. Science. 273, 1087–1091.doi:10.1126/science.273.5278.1087. . Crossref, PubMed, ISIGoogle Scholar
    • Brook E.J, Severinghaus J, Harder S& Bender M Atmospheric methane and millennial scale climate change. Mechanisms of millennial scale climate change 1999 Washington, DC:American Geophysical Union. Google Scholar
    • Brook E.J, Harder S, Severinghaus J, Steig E.J& Sucher C.M . 2000 On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Global Biogeochem. Cycles. 14, 559–572.doi:10.1029/1999GB001182. . Crossref, ISIGoogle Scholar
    • Chappellaz J, Barnola J.M, Raynaud D, Korotkevich Y.S& Lorius C . 1990 Ice-core record of atmospheric methane over the past 160 000 years. Nature. 345, 127–131.doi:10.1038/345127a0. . Crossref, ISIGoogle Scholar
    • Chappellaz J, Blunier T, Raynaud D, Barnola J.M, Schwander J& Stauffer B Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature. 366, 1993a 443–445.doi:10.1038/366443a0. . Crossref, ISIGoogle Scholar
    • Chappellaz J.A, Fung I.Y& Thompson A.M The atmospheric CH4 increase since the Last Glacial Maximum. (I) Source estimates. Tellus B. 45, 1993b 228–241.doi:10.1034/j.1600-0889.1993.t01-2-00002.x. . CrossrefGoogle Scholar
    • Chappellaz J, Blunier T, Kints S, Dallenbach A, Barnola J.M, Schwander J, Raynaud D& Stauffer B . 1997 Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Holocene. J. Geophys. Res. Atmos. 102, 15 987–15 997.doi:10.1029/97JD01017. . CrossrefGoogle Scholar
    • Claussen M, Brovkin V, Calov R, Ganopolski A& Kubatzki C . 2005 Did humankind prevent a Holocene glaciation?. Clim. Change. 69, 409–417.doi:10.1007/s10584-005-7276-2. . Crossref, ISIGoogle Scholar
    • Dällenbach A, Blunier T, Flückiger J, Stauffer B, Chappellaz J& Raynaud D . 2000 Changes in the atmospheric CH4 gradient between Greenland and Antarctica during the Last Glacial and the transition to the Holocene. Geophys. Res. Lett. 27, 1005–1008.doi:10.1029/1999GL010873. . Crossref, ISIGoogle Scholar
    • Dlugokencky E.J, Steele L.P, Lang P.M& Masarie K.A . 1994 The growth rate and distribution of atmospheric methane. J. Geophys. Res. 99, 17 021–17 043.doi:10.1029/94JD01245. . Crossref, ISIGoogle Scholar
    • EPICA Community Members. 2004 Eight glacial cycles from an Antarctic ice core. Nature. 429, 623–628.doi:10.1038/nature02599. . Crossref, PubMed, ISIGoogle Scholar
    • EPICA Community Members. 2006 One-to-one hemispheric coupling of millennial polar climate variability during the last glacial. Nature. 444, 195–198.doi:10.1038/nature05301. . Crossref, PubMed, ISIGoogle Scholar
    • Etheridge D.M, Steele L.P, Langenfelds R.L, Francey R.J, Barnola J.-M& Morgan V.I . 1996 Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4118.doi:10.1029/95JD03410. . Crossref, ISIGoogle Scholar
    • Etheridge D.M, Steele L.P, Francey R.J& Langenfelds R.L . 1998 Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climate variability. J. Geophys. Res. 103, 15 979–15 993.doi:10.1029/98JD00923. . Crossref, ISIGoogle Scholar
    • Ferretti D.F, et al. 2005 Unexpected changes to the global methane budget over the past 2000 years. Science. 309, 1714–1717.doi:10.1126/science.1115193. . Crossref, PubMed, ISIGoogle Scholar
    • Flückiger J, Dällenbach A, Blunier T, Stauffer B, Stocker T.F, Raynaud D& Barnola J.M . 1999 Variations in atmospheric N2O concentration during abrupt climatic changes. Science. 285, 227–230.doi:10.1126/science.285.5425.227. . Crossref, PubMed, ISIGoogle Scholar
    • Flückiger J, Monnin E, Stauffer B, Schwander J, Stocker T.F, Chappellaz J, Raynaud D& Barnola J.M . 2002 High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Global Biogeochem. Cycles. 16, 1010 doi:10.1029/2001GB001417. . Crossref, ISIGoogle Scholar
    • Flückiger J, Blunier T, Stauffer B, Chappellaz M, Spahni R, Kawamura K, Schwander J, Stocker T.F& Dahl-Jensen D . 2004 N2O and CH4 variations during the last glacial epoch: insight into global processes. Global Biogeochem. Cycles. 18, GB1020 doi:10.1029/2003GB002122. . Crossref, ISIGoogle Scholar
    • Goldstein B, Joos F& Stocker T.F . 2003 A modeling study of oceanic nitrous oxide during the Younger Dryas cold period. Geophys. Res. Lett. 30, 1092 doi:10.1029/2002GL016418. . Crossref, ISIGoogle Scholar
    • Houweling S, Rockmann T, Aben I, Keppler F, Krol M, Meirink J.F, Dlugokencky E.J& Frankenberg C . 2006 Atmospheric constraints on global emissions of methane from plants. Geophys. Res. Lett. 33, L15 821 doi:10.1029/2006GL026162. . Crossref, ISIGoogle Scholar
    • Huber C, Leuenberger M, Spahni R, Flückiger J, Schwander J, Stocker T.F, Johnsen S, Landals A& Jouzel J . 2006 Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet. Sci. Lett. 243, 504–519.doi:10.1016/j.epsl.2006.01.002. . Crossref, ISIGoogle Scholar
    • Hutterli M.A, Bales R.C, McConnell J.R& Stewart R.W . 2002 HCHO in Antarctic snow: preservation in ice cores and air-snow exchange. Geophys. Res. Lett. 29, 1235 doi:10.1029/2001GL014256. . Crossref, ISIGoogle Scholar
    • IPCC IPCC third assessment report: climate change 2001: the scientific basis. 2001 Cambridge, UK:Cambridge University Press. Google Scholar
    • Ishijima K, Sugawara S, Kawamura K, Hashida G, Morimoto S, Murayama S, Aoki S& Nakazawa T . 2007 Temporal variations of the atmospheric nitrous oxide concentration and its δ15N and δ18O for the latter half of the 20th century reconstructed from firn air analyses. J. Geophys. Res. 112, D03 305 doi:10.1029/2006JD007208. . Crossref, ISIGoogle Scholar
    • Johnsen S.J, Dansgaard W, Clausen H.B& Langway C.C . 1972 Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature. 235, 429–434.doi:10.1038/235429a0. . Crossref, ISIGoogle Scholar
    • Johnsen S.J, et al. 1992 Irregular glacial interstadials recorded in a new Greenland ice core. Nature. 359, 311–313.doi:10.1038/359311a0. . Crossref, ISIGoogle Scholar
    • Johnsen S.J, et al. 2001 Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: camp century, dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Q. Sci. 16, 299–307.doi:10.1002/jqs.622. . Crossref, ISIGoogle Scholar
    • Jouzel J, et al. 2001 A new 27 ky high resolution East Antarctic climate record. Geophys. Res. Lett. 28, 3199–3202.doi:10.1029/2000GL012243. . Crossref, ISIGoogle Scholar
    • Kaplan J.O . 2002 Wetlands at the last glacial maximum: distribution and methane emissions. Geophys. Res. Lett. 29, 1079 doi:10.1029/2001GL013366. . Crossref, ISIGoogle Scholar
    • Kaplan J.O, Folberth G& Hauglustaine D.A . 2006 Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Global Biogeochem. Cycles. 20, GB2016 doi:10.1029/2005GB002590. . Crossref, ISIGoogle Scholar
    • Kennett J.P, Cannariato K.G, Hendy I.L& Behl R.J Methane hydrates in quaternary climate change: the clathrate gun hypothesis. AGU Special Publications vol. 54 2002 Washington, DC:AGU. Google Scholar
    • Keppler F, Hamilton J.T.G, Brass M& Rockmann T . 2006 Methane emissions from terrestrial plants under aerobic conditions. Nature. 439, 187–191.doi:10.1038/nature04420. . Crossref, PubMed, ISIGoogle Scholar
    • Kirschbaum M.U.F, Bruhn D, Etheridge D.M, Evans J.R, Farquhar G.D, Gifford R.M, Paul K.I& Winters A.J . 2006 A comment on the quantitative significance of aerobic methane release by plants. Funct. Plant Biol. 33, 521–530.doi:10.1071/FP06051. . CrossrefGoogle Scholar
    • Lathiere J, Hauglustaine D.A, De Noblet-Ducoudre N, Krinner G& Folberth G.A . 2005 Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys. Res. Lett. 32, L20 818 doi:10.1029/2005GL024164. . Crossref, ISIGoogle Scholar
    • Lisiecki L.E& Raymo M.E . 2005 A Pliocene–Pleistocene stack of 57 globally distributed benthic delta O-18 records. Paleoceanography. 20, PA1003 doi:10.1029/2004PA001071. . Google Scholar
    • MacFarling Meure C, Etheridge D, Trudinger C, Steele P, Langenfelds R, van Ommen T, Smith A& Elkins J . 2006 Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33, L14810 doi:10.1029/2006GL026152. . Crossref, ISIGoogle Scholar
    • Masson-Delmotte V, et al. 2006 Past temperature reconstructions from deep ice cores: relevance for future climate change. Clim. Past. 2, 145–165. Crossref, ISIGoogle Scholar
    • Monson R.K, et al. 2007 Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations. Phil. Trans. R. Soc. A. 365, 1677–1695.doi:10.1098/rsta.2007.2038. . Link, ISIGoogle Scholar
    • Neftel A, Moor E, Oeschger H& Stauffer B . 1985 Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature. 315, 45–47.doi:10.1038/315045a0. . Crossref, ISIGoogle Scholar
    • Nisbet E.G . 1992 Sources of atmospheric CH4 in early postglacial time. J. Geophys. Res. 97, 12 859–12 867. Crossref, ISIGoogle Scholar
    • North Greenland Ice Core Project Members. 2004 High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 431, 147–151.doi:10.1038/nature02805. . Crossref, PubMed, ISIGoogle Scholar
    • Petit J.R, et al. 1999 Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 399, 429–436.doi:10.1038/20859. . Crossref, ISIGoogle Scholar
    • Raynaud D, Chappellaz J, Barnola J.M, Korotkevich Y.S& Lorius C . 1988 Climatic and CH4 cycle implications of glacial-interglacial CH4 change in the Vostok ice core. Nature. 333, 655–657.doi:10.1038/333655a0. . Crossref, ISIGoogle Scholar
    • Raynaud D, Jouzel J, Barnola J.M, Chappellaz J, Delmas R.J& Lorius C . 1993 The ice record of greenhouse gases. Science. 259, 926–934. Crossref, ISIGoogle Scholar
    • Ruddiman W.F . 2003 The anthropogenic greenhouse era began thousands of years ago. Clim. Change. 61, 261–293.doi:10.1023/B:CLIM.0000004577.17928.fa. . Crossref, ISIGoogle Scholar
    • Ruddiman W.F . 2006 On “The Holocene CO2 rise: anthropogenic or natural?”. EOS Trans. 87, 352–353. CrossrefGoogle Scholar
    • Schaefer H, Whiticar M.J, Brook E.J, Petrenko V.V, Ferretti D.F& Severinghaus J.P . 2006 Ice record of delta C-13 for atmospheric CH4 across the Younger Dryas–Preboreal transition. Science. 313, 1109–1112.doi:10.1126/science.1126562. . Crossref, PubMed, ISIGoogle Scholar
    • Schwander J& Stauffer B . 1984 Age difference between polar ice and the air trapped in its bubbles. Nature. 311, 45–47.doi:10.1038/311045a0. . Crossref, ISIGoogle Scholar
    • Severinghaus J.P, Sowers T, Brook E.J, Alley R.B& Bender M.L . 1998 Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature. 391, 141–146.doi:10.1038/34346. . Crossref, ISIGoogle Scholar
    • Siegenthaler U, et al. 2005 Stable carbon cycle–climate relationship during the Late Pleistocene. Science. 310, 1313–1317.doi:10.1126/science.1120130. . Crossref, PubMed, ISIGoogle Scholar
    • Sowers T . 2001 N2O record spanning the penultimate deglaciation from the Vostok ice core. J. Geophys. Res. Atmos. 106, 31 903–31 914.doi:10.1029/2000JD900707. . CrossrefGoogle Scholar
    • Sowers T . 2006 Late quaternary atmospheric CH4 isotope record suggests marine clathrates are stable. Science. 311, 838–840.doi:10.1126/science.1121235. . Crossref, PubMed, ISIGoogle Scholar
    • Sowers T, Rodebaugh A, Yoshida N& Toyoda S . 2002 Extending records of the isotopic composition of atmospheric N2O back to 1800 AD from air trapped in snow at the South Pole and the Greenland Ice Sheet Project II ice core. Global Biogeochem. Cycles. 16, 1129 doi:10.1029/2002GB001911. . Crossref, ISIGoogle Scholar
    • Sowers T, Alley R.B& Jubenville J . 2003 Ice core records of atmospheric N2O covering the last 106 000 years. Science. 301, 945–948.doi:10.1126/science.1085293. . Crossref, PubMed, ISIGoogle Scholar
    • Sowers T, Bernard S, Aballain O, Chappellaz J, Barnola J.M& Marik T . 2005 Records of the delta C-13 of atmospheric CH4 over the last 2 centuries as recorded in Antarctic snow and ice. Global Biogeochem. Cycles. 19, GB2002 doi:10.1029/2004GB002408. . Crossref, ISIGoogle Scholar
    • Spahni R, Schwander J, Flückiger J, Stauffer B, Chappellaz J& Raynaud D . 2003 The attenuation of fast atmospheric CH4 variations recorded in polar ice cores. Geophys. Res. Lett. 30, 1571 doi:10.1029/2003GL017093. . Crossref, ISIGoogle Scholar
    • Spahni R, et al. 2005 Atmospheric methane and nitrous oxide of the late Pleistocene from Antarctic ice cores. Science. 310, 1317–1321.doi:10.1126/science.1120132. . Crossref, PubMed, ISIGoogle Scholar
    • Staffelbach T, Neftel A, Stauffer B& Jacob D . 1991 A record of the atmospheric methane sink from formaldehyde in polar ice cores. Nature. 349, 603–605.doi:10.1038/349603a0. . Crossref, ISIGoogle Scholar
    • Stauffer B, Fischer G, Neftel A& Oeschger H . 1985 Increase of atmospheric methane recorded in Antarctic ice core. Science. 229, 1386–1388.doi:10.1126/science.229.4720.1386. . Crossref, PubMed, ISIGoogle Scholar
    • Stauffer B, Flückiger J, Monnin E, Schwander J, Barnola J.M& Chappellaz J . 2002 Atmospheric CO2, CH4 and N2O records over the past 60,000 years based on the comparison of different polar ice cores. Ann. Glaciol. 35, 202–208. Crossref, ISIGoogle Scholar
    • Stocker T.F& Johnsen S.J . 2003 A minimum thermodynamic model for the bipolar seesaw. Paleoceanography. 18, 1087 doi:10.1029/2003PA000920. . CrossrefGoogle Scholar
    • Thonicke K, Prentice I.C& Hewitt C . 2005 Modeling glacial–interglacial changes in global fire regimes and trace gas emissions. Global Biogeochem. Cycles. 19, GB3008 doi:10.1029/2004GB002278. . Crossref, ISIGoogle Scholar
    • Thorpe R.B Can methane driven deglaciation provide a plausible account of the end of the last ice age?. In University of Cambridge 1996 Cambridge, UK:University of Cambridge. Google Scholar
    • Thorpe R.B, Law K.S, Bekki S, Pyle J.A& Nisbet E.G . 1996 Is methane-driven deglaciation consistent with the ice core record?. J. Geophys. Res. Atmos. 101, 28 627–28 635.doi:10.1029/96JD02547. . CrossrefGoogle Scholar
    • Tschumi J& Stauffer B . 2000 Reconstructing past atmospheric CO2 concentration based on ice-core analyses: open questions due to in situ production of CO2 in the ice. J. Glaciol. 46, 45–53. Crossref, ISIGoogle Scholar
    • Valdes P.J, Beerling D.J& Johnson C.E . 2005 The ice age methane budget. Geophys. Res. Lett. 32, L02 704 doi:10.1029/2004GL021004. . Crossref, ISIGoogle Scholar
    • Walter K.M, Zimov S.A, Chanton J.P, Verbyla D& Chapin F.S . 2006 Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature. 443, 71–75.doi:10.1038/nature05040. . Crossref, PubMed, ISIGoogle Scholar
    • Watanabe O, Jouzel J, Johnsen S, Parrenin F, Shoji H& Yoshida N . 2003 Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature. 422, 509–512.doi:10.1038/nature01525. . Crossref, PubMed, ISIGoogle Scholar