Philosophical Transactions of the Royal Society B: Biological Sciences
Published:https://doi.org/10.1098/rstb.2007.2198

    To understand how boreal forest carbon (C) dynamics might respond to anticipated climatic changes, we must consider two important processes. First, projected climatic changes are expected to increase the frequency of fire and other natural disturbances that would change the forest age-class structure and reduce forest C stocks at the landscape level. Second, global change may result in increased net primary production (NPP). Could higher NPP offset anticipated C losses resulting from increased disturbances? We used the Carbon Budget Model of the Canadian Forest Sector to simulate rate changes in disturbance, growth and decomposition on a hypothetical boreal forest landscape and to explore the impacts of these changes on landscape-level forest C budgets. We found that significant increases in net ecosystem production (NEP) would be required to balance C losses from increased natural disturbance rates. Moreover, increases in NEP would have to be sustained over several decades and be widespread across the landscape. Increased NEP can only be realized when NPP is enhanced relative to heterotrophic respiration. This study indicates that boreal forest C stocks may decline as a result of climate change because it would be difficult for enhanced growth to offset C losses resulting from anticipated increases in disturbances.

    References

    • Angert A, Biraud S, Bonfils C, Henning C.C, Buermann W, Pinzon J, Tucker C.J& Fung I . 2005 Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl Acad. Sci. USA. 102, 10 823–10 827.doi:10.1073/pnas.0501647102. . Crossref, Web of ScienceGoogle Scholar
    • Barber V.A, Juday G.P& Finney B.P . 2000 Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature. 405, 668–673.doi:10.1038/35015049. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Berg E.E, Henry J.D, Fastie C.L, De Volder A.D& Matsuoka S.M . 2006 Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecol. Manage. 227, 219–232.doi:10.1016/j.foreco.2006.02.038. . Crossref, Web of ScienceGoogle Scholar
    • Boudewyn, P., Song, X., Magnussen, S. & Gillis, M. D. 2007 Model based, volume-to-biomass conversion for forested and vegetated land in Canada. Information Report BC-X-411. Natural Resources Canada, Canadian Forest Service Victoria. Google Scholar
    • Bunn A.G, Goetz S.J, Kimball J.S& Zhang K . 2007 Northern high-latitude ecosystems respond to climate change. Eos. 88, 333–340. CrossrefGoogle Scholar
    • Canadell J.G, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA. 104, 2007a 18 866–18 870.doi:10.1073/pnas.0702737104. . Crossref, Web of ScienceGoogle Scholar
    • Canadell, J. G., Pataki, D. E., Gifford, R., Houghton, R. A., Luo, Y., Raupack, M. R., Smith, P. & Steffen, W. 2007b Saturation of the terrestrial carbon sink. In Terrestrial ecosystems in a changing world (eds J. G. Canadell, D. E. Pataki & L. F. Pitelka), pp. 59–78. The IGBP Series. Berlin, Germany: Springer. Google Scholar
    • Carroll, A. L., Taylor, S. W., Régnière, J. & Safranyik, L. 2004 Effects of climate change on range expansion by the mountain pine beetle in British Columbia. In Mountain pine beetle symposium: challenges and solutions (eds T. L. Shore, J. E. Brooks & J. E. Stone), pp. 223–232. Information Report BC-X-399. Victoria, Canada: Natural Resources Canada. Google Scholar
    • Carroll, A. L., Régnière, J., Logan, J. A., Taylor, S. W., Bentz, B. J. & Powell, J. A. 2006 Impacts of climate change on range expansion by the mountain pine beetle. Mountain pine beetle initiative working paper 2006-14. Victoria, Canada: Natural Resources Canada. Google Scholar
    • Chen J, Chen W.J, Liu J, Cihlar J& Gray S . 2000 Annual carbon balance of Canada's forests during 1895–1996. Global Biogeochem. Cy. 14, 839–849.doi:10.1029/1999GB001207. . Crossref, Web of ScienceGoogle Scholar
    • Chen J.M, Chen B, Higuchi K, Liu J, Chan D, Worthy D, Tans P& Black A . 2006 Boreal ecosystems sequester more carbon in warmer years. Geophys. Res. Lett. 33, L10803 doi:10.1029/2006GL025919. . Crossref, Web of ScienceGoogle Scholar
    • Cox P.M, Betts R.A, Jones C.D, Spall S.A& Totterdell I.J . 2000 Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature. 408, 184–187.doi:10.1038/35041539. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Dargaville R, Baker D, Rödenbeck C, Rayner P& Ciais P . 2006 Estimating high latitude carbon fluxes with inversions of atmospheric CO2. Mitig. Adapt. Strat. Glob. Change. 11, 769–782.doi:10.1007/s11027-005-9018-1. . CrossrefGoogle Scholar
    • de Groot W.J, Bothwell P.M, Carlsson D.H& Logan K.A . 2003 Simulating the effects of future fire regimes on western Canadian boreal forests. J. Veg. Sci. 14, 355–364.doi:10.1658/1100-9233(2003)014[0355:STEOFF]2.0.CO;2. . Crossref, Web of ScienceGoogle Scholar
    • Denman K.L, et al. Couplings between changes in the climate system and biogeochemistry. Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change , Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K.B, Tignor M& Miller H.L . 2007pp. 499–587. Eds. Cambridge, UK; New York, NY:Cambridge University Press. Google Scholar
    • de Vries W, Reinds G.J, Gundersen P& Sterba H . 2006 The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biol. 12, 1151–1173.doi:10.1111/j.1365-2486.2006.01151.x. . Crossref, Web of ScienceGoogle Scholar
    • Euskirchen E.S, et al. 2006 Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biol. 12, 731–750.doi:10.1111/j.1365-2486.2006.01113.x. . Crossref, Web of ScienceGoogle Scholar
    • Flannigan M.D& van Wagner C.E . 1991 Climate change and wildfire in Canada. Can. J. Forest Res. 21, 66–72.doi:10.1139/x91-010. . Crossref, Web of ScienceGoogle Scholar
    • Flannigan M.D, Amiro B.D, Logan K.A, Stocks B.J& Wotton B.M Forest fires and climate change in the 21st century. Mitig. Adapt. Strat. Glob. Change. 11, 2005a 847–859.doi:10.1007/s11027-005-9020-7. . CrossrefGoogle Scholar
    • Flannigan M.D, Logan K.A, Amiro B.D, Skinner W.R& Stocks B.J Future area burned in Canada. Clim. Change. 72, 2005b 1–16.doi:10.1007/s10584-005-5935-y. . Crossref, Web of ScienceGoogle Scholar
    • Goodale C.L, et al. 2002 Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 12, 891–899.doi:10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2. . Crossref, Web of ScienceGoogle Scholar
    • Goulden M.L, et al. 1998 Sensitivity of boreal forest carbon balance to soil thaw. Science. 279, 214–217.doi:10.1126/science.279.5348.214. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • IPCC 2000 Land use, land-use change, and forestry. A special report of the Intergovernmental Panel on Climate Change (eds R. T. Watson, I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo & D. J. Dokken). Cambridge, UK; New York, NY: Cambridge University Press. Google Scholar
    • Kang S, Kimball J.S& Running S.W . 2006 Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Sci. Total Environ. 362, 85–102.doi:10.1016/j.scitotenv.2005.11.014. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Kull, S. J., Kurz, W. A., Rampley, G. J., Banfield, G. E., Schivatcheva, R. K. & Apps, M. J. 2006 Operational-scale carbon budget model of the Canadian forest sector (CBM-CFS3) version 1.0: user's guide. Edmonton, Canada: Natural Resources Canada. Google Scholar
    • Kurz W.A& Apps M.J . 1995 An analysis of future carbon budgets of Canadian boreal forests. Water Air Soil Poll. 82, 321–331.doi:10.1007/BF01182844. . Crossref, Web of ScienceGoogle Scholar
    • Kurz W.A& Apps M.J . 1999 A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9, 526–547.doi:10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2. . Crossref, Web of ScienceGoogle Scholar
    • Kurz, W. A., Apps, M. J. Webb, T. M. & McNamee, P. J. 1992 The carbon budget of the Canadian forest sector: phase I. Information Report NOR-X-326. Forestry Canada, Edmonton. Google Scholar
    • Kurz W.A, Apps M.J, Stocks B.J& Volney W.J.A Global climatic change: disturbance regimes and biospheric feedbacks of temperate and boreal forests. Biospheric feedbacks in the global climate system: will the warming feed the warming? , Woodwell G.F& Mackenzie F . 1995pp. 119–133. Eds. New York, NY:Oxford University Press. Google Scholar
    • Kurz W.A, Beukema S.J& Apps M.J . 1998 Carbon budget implications of the transition from natural to managed disturbance regimes in forest landscapes. Mitig. Adapt. Strat. Glob. Change. 2, 405–421. Google Scholar
    • Li Z, Apps M.J, Kurz W.A& Banfield E . 2003 Temporal changes of forest NPP and NEP in west central Canada associated with natural and anthropogenic disturbances. Can. J. Forest Res. 33, 2340–2351.doi:10.1139/x03-168. . Crossref, Web of ScienceGoogle Scholar
    • Logan J.A, Régnière J& Powell J.A . 2003 Assessing the impacts of global warming on forest pest dynamics. Front. Ecol. Environ. 1, 130–137. Crossref, Web of ScienceGoogle Scholar
    • Myneni R.B, Keeling C.D, Tucker C.J, Asrar G& Nemani R.R . 1997 Increased plant growth in the northern high latitudes from 1981 to 1991. Nature. 386, 698–702.doi:10.1038/386698a0. . Crossref, Web of ScienceGoogle Scholar
    • Myneni R.B, Dong J, Tucker C.J, Kaufmann R.K, Kauppi P.E, Liski J, Zhou L, Alexeyev V& Hughes M.K . 2001 A large carbon sink in the woody biomass of northern forests. Proc. Natl Acad. Sci. USA. 98, 14 784–14 789.doi:10.1073/pnas.261555198. . Crossref, Web of ScienceGoogle Scholar
    • Nemani R.R, Keeling C.D, Hashimoto H, Jolly W.M, Piper S.C, Tucker C.J, Myneni R.B& Running S.W . 2003 Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science. 300, 1560–1563.doi:10.1126/science.1082750. . Crossref, PubMed, Web of ScienceGoogle Scholar
    • Peng C.H& Apps M.J . 1999 Modelling the response of net primary productivity (NPP) of boreal forest ecosystems to changes in climate and fire disturbance regimes. Ecol. Model. 122, 175–193.doi:10.1016/S0304-3800(99)00137-4. . Crossref, Web of ScienceGoogle Scholar
    • Price C& Rind D . 1994 The impact of a 2×CO2 climate on lightning-caused fires. J. Clim. 7, 1484–1494.doi:10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2. . Crossref, Web of ScienceGoogle Scholar
    • Ruosteenoja K, Carter T.R, Jylhä K& Tuomenvirta H Future climate in world regions: an intercomparison of model-based projections for the new IPCC emissions scenarios. 2003 Helsinki, Finland:Edita Publishing Ltd The Finnish Environment 644. Google Scholar
    • Slayback D.A, Pinzon J.E, Los S.O& Tucker C.J . 2003 Northern Hemisphere photosynthetic trends 1982–99. Global Change Biol. 9, 1–15.doi:10.1046/j.1365-2486.2003.00507.x. . Crossref, Web of ScienceGoogle Scholar
    • Steffen W, et al. Global change and the Earth system: a planet under pressure. 2004 Heidelberg, Germany:Springer. Google Scholar
    • Stocks B.J, et al. 2002 Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 108, FFR5.1–FFR5.12.doi:10.1029/2001JD000484. . CrossrefGoogle Scholar
    • Thompson C.D, McGuire A.D, Clein J.S, Chapin F.S& Beringer J . 2006 Net carbon exchange across the arctic tundra–boreal forest transition in Alaska 1981–2000. Mitig. Adapt. Strat. Glob. Change. 11, 805–827.doi:10.1007/s11027-005-9016-3. . CrossrefGoogle Scholar
    • Thornley J.H.M& Cannell M.G.R . 2004 Long-term effects of fire frequency on carbon storage and productivity of boreal forests: a modeling study. Tree Physiol. 24, 765–773. Crossref, PubMed, Web of ScienceGoogle Scholar
    • van Wagner C.E . 1978 Age-class distribution and the forest fire cycle. Can. J. Forest Res. 8, 220–227. Crossref, Web of ScienceGoogle Scholar
    • Zhuang Q, et al. 2006 CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys. Res. Lett. 33, L17403 doi:10.1029/2006GL026972. . Crossref, Web of ScienceGoogle Scholar