Advertisement
No access
Reports

Geographic Range Size and Determinants of Avian Species Richness

Science
30 Aug 2002
Vol 297, Issue 5586
pp. 1548-1551

Abstract

Geographic patterns in species richness are mainly based on wide-ranging species because their larger number of distribution records has a disproportionate contribution to the species richness counts. Here we demonstrate how this effect strongly influences our understanding of what determines species richness. Using both conventional and spatial regression models, we show that for sub-Saharan African birds, the apparent role of productivity diminishes with decreasing range size, whereas the significance of topographic heterogeneity increases. The relative importance of geometric constraints from the continental edge is moderate. Our findings highlight the failure of traditional species richness models to account for narrow-ranging species that frequently are also threatened.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (jetz.som.tables3.xls)
File (jetz.som.tabless1ands2.pdf)
File (jetz.som.text.pdf)

REFERENCES AND NOTES

1
Pagel M. D., May R. M., Collie A. R., Am. Nat. 137, 791 (1991).
2
J. H. Brown, Macroecology (Univ. of Chicago Press, Chicago, 1995).
3
K. J. Gaston, Rarity (Chapman and Hall, London, 1994).
4
Currie D. J., Am. Nat. 137, 27 (1991).
5
M. L. Rosenzweig, Z. Abramsky, in Species Diversity in Ecological Communities, R. E. Ricklefs, D. Schluter, Eds. (Univ. of Chicago Press, London, 1993), pp. 52–65.
6
L. Hansson, L. Fahrig, G. Merriam, Mosaic Landscapes and Ecological Processes, (Chapman and Hall, London, 1995).
7
Guegan J. F., Lek S., Oberdorff T., Nature 391, 382 (1998).
8
Connor E. F., McCoy E. D., Am. Nat. 113, 791 (1979).
9
M. L. Rosenzweig, Species Diversity in Space and Time (Cambridge Univ. Press, Cambridge, 1995).
10
R. E. Ricklefs, D. Schluter, in Species Diversity in Ecological Communities, R. E. Ricklefs, D. Schluter, Eds. (Chicago Univ. Press, Chicago, 1993), pp. 350–363.
11
Rahbek C., Graves G. R., Proc. Natl. Acad. Sci. U.S.A. 98, 4534 (2001).
12
Colwell R. K., Lees D. C., Trends Ecol. Evol. 15, 70 (2000).
13
Lees D. C., Kremen C., Andriamampianina L., Biol. J. Linn. Soc. 67, 529 (1999).
14
Jetz W., Rahbek C., Proc. Natl. Acad. Sci. U.S.A. 98, 5661 (2001).
15
Materials and methods are available as supporting material on Science Online.
16
N. A. C. Cressie, Statistics for Spatial Data (Wiley, New York, 1993).
17
Lennon J. J., Ecography 23, 101 (2000).
18
Turner J. R. G., Lennon J. J., Lawrenson J. A., Nature 335, 539 (1988).
19
Lennon J. J., Greenwood J. J. D., Turner J. R. G., J. Anim. Ecol. 69, 581 (2000).
20
Colwell R. K., Hurtt G. C., Am. Nat. 144, 570 (1994).
21
Willig M. R., Lyons S. K., Oikos 81, 93 (1998).
22
Koleff P., Gaston K. J., Ecography 24, 341 (2001).
23
Anderson S., Am. Mus. Novit. 2833, 1 (1985).
24
Currie D. J., Paquin V., Nature 329, 326 (1987).
25
Balmford A., et al., Science 291, 2616 (2001).
26
Kerr J. T., Packer L., Nature 385, 252 (1997).
27
Elenga H., et al., J. Biogeogr. 27, 621 (2000).
28
Graves G. R., Auk 102, 556 (1985).
29
Pomeroy D., Conserv. Biol. 7, 901 (1993).
30
Crowe T. M., Crowe A. A., J. Zool. 198, 417 (1982).
31
A. J. Stattersfield, D. R. Capper, G. C. L. Dutson, Threatened Birds of the World (BirdLife International, International Union for Conservation of Nature and Natural Resources; Lynx Edicions, Barcelona, 2000).
32
We thank D. Rogers, B. Bakker, W. Wint, and S. Hay for Geographic Information Systems advice and discussions; I. Woodward for providing productivity data; L. A. Hansen for assistance with access to the African bird database on behalf of the Zoological Museum University of Copenhagen (ZMUC); and E. Baker, N. Baker, F. Dowsett-Lemaire, R. Dowsett, J. Fjeldså, M. E. Gartshore, H. M. de Klerk, M. Languy, R. B. Payn, COC/BirdLife Cameroon, and BirdLife International for providing data for the ZMUC database. The manuscript benefited tremendously from discussions with R. K. Colwelland comments from J. Brown, J. Fjeldså, R. Freckleton, K. Gaston, N. J. Gotelli, G. R. Graves, P. Harvey, R. Lande, O. Lewis, R. May, I. Owens, and D. Rogers. W.J. was supported by Natural Environment Research Council and German Scholarship Foundation studentships; C.R. was supported by the Danish National Science Foundation (grant J. nr. 21-01-0547).
Materials and Methods
Supporting Text
Tables S1 to S3

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 297 | Issue 5586
30 August 2002

Submission history

Received: 11 April 2002
Accepted: 25 July 2002
Published in print: 30 August 2002

Permissions

Request permissions for this article.

Authors

Affiliations

Walter Jetz*
Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
Carsten Rahbek
Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen O, Denmark.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. The global distribution of known and undiscovered ant biodiversity, Science Advances, 8, 31, (2022)./doi/10.1126/sciadv.abp9908
    Abstract
  2. The evolution of a tropical biodiversity hotspot, Science, 370, 6522, (1343-1348), (2021)./doi/10.1126/science.aaz6970
    Abstract
  3. Building mountain biodiversity: Geological and evolutionary processes, Science, 365, 6458, (1114-1119), (2021)./doi/10.1126/science.aax0151
    Abstract
  4. Humboldt’s enigma: What causes global patterns of mountain biodiversity?, Science, 365, 6458, (1108-1113), (2021)./doi/10.1126/science.aax0149
    Abstract
  5. An Update of Wallace’s Zoogeographic Regions of the World, Science, 339, 6115, (74-78), (2021)./doi/10.1126/science.1228282
    Abstract
  6. The Influence of Late Quaternary Climate-Change Velocity on Species Endemism, Science, 334, 6056, (660-664), (2021)./doi/10.1126/science.1210173
    Abstract
  7. The Macroecological Contribution to Global Change Solutions, Science, 316, 5831, (1581-1584), (2021)./doi/10.1126/science.1133267
    Abstract
  8. Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton, Science Advances, 7, 15, (2021)./doi/10.1126/sciadv.abd6709
    Abstract
  9. Global pattern of phytoplankton diversity driven by temperature and environmental variability, Science Advances, 5, 5, (2019)./doi/10.1126/sciadv.aau6253
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media