Advertisement
No access
Special Viewpoints

Evolution of the Protein Repertoire

Science
13 Jun 2003
Vol 300, Issue 5626
pp. 1701-1703

Abstract

Most proteins have been formed by gene duplication, recombination, and divergence. Proteins of known structure can be matched to about 50% of genome sequences, and these data provide a quantitative description and can suggest hypotheses about the origins of these processes.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
M. F. Perutz, J. C. Kendrew, H. C. Watson, J. Mol. Biol.13, 669 (1965).
2
M. Lynch, J. S. Conery, Science290, 1151 (2000).
3
J. Goughet al., J. Mol. Biol.313, 903 (2001). Data used here includes updated results that can be found at http://supfam.org.
4
E. V. Koonin, M. Y. Galperin, Sequence-Evolution-Function (Kluwer Academic, Boston, MA, 2003).
5
A. G. Murzinet al., J. Mol. Biol.247, 536 (1995). Names of domain families are taken from the SCOP database at http://scop.mrc-lmb.cam.ac.uk/scop/.
6
Y. I. Wolfet al., Genome Res.9, 17 (1999).
7
A. Muller et al., Genome Res.12, 1625 (2002).
8
V. A. Kuznetsov, J. Biol. Syst.10, 381 (2002).
9
M. A. Huynen, E. van Nimwegen, Mol. Biol. Evol.15, 583 (1998).
10
J. Qianet al., J. Mol. Biol.313, 673 (2001).
11
E. V. Koonin, Y. I. Wolf, G. P. Karev, Nature420, 218 (2002).
12
C. A. Wilson, J. Kreychman, M. Gerstein, J. Mol. Biol.297, 233 (2000).
13
A. E. Todd, C. A. Orengo, J. M. Thornton, J. Mol. Biol.307, 1113 (2001).
14
M. G. Rossmannet al., Nature259, 194 (1974).
15
S. A. Teichmann, J. Park, C. Chothia, Proc. Natl. Acad. Sci. U.S.A.95, 14658 (1998).
16
E. V. Koonin, L. Aravind, A. S. Kondrashov, Cell101, 573 (2000).
17
G. Apic, W. Huber, S. A. Teichmann, J. Struct. Funct. Genomics, in press.
18
G. Apic, J. Gough, S. A. Teichmann, J. Mol. Biol.310, 311 (2001).
19
S. Wuchty, Mol. Biol. Evol.18, 1694 (2001).
20
M. Bashton, C. Chothia, J. Mol. Biol.315, 927 (2002).
21
C. Vogel, C. Berzuini, S. A. Teichmann, unpublished data.
22
N. H. Horowitz in Evolving Genes and Proteins, V. Bryson, H. J. Vogel, Eds. (Academic Press, New York, 1965), pp. 15–23.
23
R. A. Jensen, Annu. Rev. Microbiol.30, 409 (1976).
24
M. Riley, M. H. Serres, Annu. Rev. Microbiol.54, 341 (2000).
25
S. A. Teichmann et al., J. Mol. Biol.311, 693 (2001).
26
S. C. G. Rison, S. A. Teichmann, J. M. Thornton, J. Mol. Biol.318, 911 (2002).
27
R. Alves, R. A. Chaleil, M. J. Sternberg, J. Mol. Biol.320, 751 (2002).
28
T. Dandekaret al., Biochem. J.343, 115 (1999).
29
O. Jardine et al., Genome Res.12, 916 (2002).
30
E. V. Koonin, A. R. Mushegian, P. Bork, Trends Genet.12, 334 (1996).
31
R. L. Tatusov, E. V. Koonin, D. J. Lipman, Science278, 631 (1997).
32
S. A. Chervitzet al., Science282, 2022 (1998).
33
C. Vogel, S. A. Teichmann, C. Chothia, unpublished data.
34
We thank M. Madera, E. Koonin, and A. Finkelstein for comments on the manuscript. J.G. has a Burroughs-Welcome Fellowship from the Program in Mathematics and Molecular Biology, and C.V. has a Boehringer Ingelheim Predoctoral Fellowship.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 300 | Issue 5626
13 June 2003

Submission history

Published in print: 13 June 2003

Permissions

Request permissions for this article.

Authors

Affiliations

Cyrus Chothia
Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
Julian Gough
Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA 94305–5126, USA.
Christine Vogel
Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
Sarah A. Teichmann
Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Genome-wide analysis of the SBT gene family involved in drought tolerance in cotton, Frontiers in Plant Science, 13, (2023).https://doi.org/10.3389/fpls.2022.1097732
    Crossref
  2. The DPY-30 Domain and Its Flanking Sequence Mediate the Assembly and Modulation of Flagellar Radial Spoke Complexes, Molecular and Cellular Biology, 32, 19, (4012-4024), (2023).https://doi.org/10.1128/MCB.06602-11
    Crossref
  3. Gene Mutagenesis Methods in Directed Evolution and Rational Enzyme Design, Enzyme Engineering, (59-139), (2023).https://doi.org/10.1002/9783527836895.ch3
    Crossref
  4. Female fertility and the zona pellucida, eLife, 11, (2022).https://doi.org/10.7554/eLife.76106
    Crossref
  5. Genome-wide characterization and sequence polymorphism analyses of cysteine-rich poly comb-like protein in Glycine max, Frontiers in Plant Science, 13, (2022).https://doi.org/10.3389/fpls.2022.996265
    Crossref
  6. Identification of SNAT Family Genes Suggests GhSNAT3D Functional Reponse to Melatonin Synthesis Under Salinity Stress in Cotton, Frontiers in Molecular Biosciences, 9, (2022).https://doi.org/10.3389/fmolb.2022.843814
    Crossref
  7. Genome-wide identification of PME gene family and expression of candidate genes associated with aluminum tolerance in tea plant (Camellia sinensis), BMC Plant Biology, 22, 1, (2022).https://doi.org/10.1186/s12870-022-03686-7
    Crossref
  8. Genome-wide expression analysis of carboxylesterase (CXE) gene family implies GBCXE49 functional responding to alkaline stress in cotton, BMC Plant Biology, 22, 1, (2022).https://doi.org/10.1186/s12870-022-03579-9
    Crossref
  9. Simultaneous editing of three homoeologues of TaCIPK14 confers broad‐spectrum resistance to stripe rust in wheat , Plant Biotechnology Journal, 21, 2, (354-368), (2022).https://doi.org/10.1111/pbi.13956
    Crossref
  10. DEMO2: Assemble multi-domain protein structures by coupling analogous template alignments with deep-learning inter-domain restraint prediction, Nucleic Acids Research, 50, W1, (W235-W245), (2022).https://doi.org/10.1093/nar/gkac340
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media