Advertisement

Abstract

Large-scale genome sequencing is providing a comprehensive view of the complex evolutionary forces that have shaped the structure of eukaryotic chromosomes. Comparative sequence analyses reveal patterns of apparently random rearrangement interspersed with regions of extraordinarily rapid, localized genome evolution. Numerous subtle rearrangements near centromeres, telomeres, duplications, and interspersed repeats suggest hotspots for eukaryotic chromosome evolution. This localized chromosomal instability may play a role in rapidly evolving lineage-specific gene families and in fostering large-scale changes in gene order. Computational algorithms that take into account these dynamic forces along with traditional models of chromosomal rearrangement show promise for reconstructing the natural history of eukaryotic chromosomes.

Get full access to this article

View all available purchase options and get full access to this article.

References and Notes

1
S. J. O'Brien et al., Science286, 458 (1999).
2
Arabidopsis Genome Initiative, Nature408, 796 (2000).
3
S. Aparicio et al., Science297, 1301 (2002).
4
J. H. Nadeau, B. A. Taylor, Proc. Natl. Acad. Sci. U.S.A.81, 814 (1984).
5
International Human Genome Sequencing Consortium, Nature409, 860 (2001).
6
Mouse Genome Sequencing Consortium, Nature420, 520 (2002).
7
J. Ehrlich, D. Sankoff, J. H. Nadeau, Genetics147, 289 (1997).
8
D. W. Burt et al., Nature402, 411 (1999).
9
I. V. Sharakhov et al., Science298, 182 (2002).
10
A. Coghlan, K. H. Wolfe, Genome Res.12, 857 (2002).
11
F. Grutzner et al., Genome Res.12, 1316 (2002).
12
H. Skaletsky et al., Nature423, 825 (2003).
13
N. Archidiacono et al., Chromosoma107, 241 (1998).
14
M. A. Huynen, B. Snel, P. Bork, Trends Genet.17, 304 (2001).
15
C. Seoighe et al., Proc. Natl. Acad. Sci. U.S.A.97, 14433 (2000).
16
M. Kellis, N. Patterson, M. Endrizzi, B. Birren, E. S. Lander, Nature423, 241 (2003).
17
E. M. Zdobnov et al., Science298, 149 (2002).
18
P. Pevzner, G. Tesler, RECOMB 2003: The Seventh Annual International Conference on Research in Computational Molecular Biology, organized by the Max Planck Institute for Molecular Genetics and the Berlin Center for Genome-Based Bioinformatics, 10-13 April 2003, Berlin, Germany.
19
P. Pevzner, G. Tesler, Genome Res.13, 37 (2003).
20
S. Kumar, S. R. Gadagkar, A. Filipski, X. Gu, Genetics157, 1387 (2001).
21
J. E. Horvath, J. A. Bailey, D. P. Locke, E. E. Eichler, Hum. Mol. Genet.10, 2215 (2001).
22
R. A. Hoskins et al., Genome Biol.3, 85 (2002).
23
M. G. Schueler, A. W. Higgins, M. K. Rudd, K. Gustashaw, H. F. Willard, Science294, 109 (2001).
24
G. P. Copenhaver et al., Science286, 2468 (1999).
25
H. C. Riethman et al., Nature409, 948 (2001).
26
M. Ventura, N. Archidiacono, M. Rocchi, Genome Res.11, 595 (2001).
27
D. J. Amor, K. H. Choo, Am. J. Hum. Genet.71, 695 (2002).
28
J. S. Kaminker et al., Genome Biol.3, 84 (2002).
29
N. Jiang et al., Nature421, 163 (2003).
30
R. A. Holt et al., Science298, 129 (2002).
31
G. Glockner et al., Nature418, 79 (2002).
32
J. Guy et al., Genome Res.13, 159 (2003).
33
J. A. Bailey et al., Science297, 1003 (2002).
34
H. C. Mefford, B. J. Trask, Nature Rev. Genet.3, 95 (2002).
35
E. E. Eichler, Trends Genet.17, 661 (2001).
36
B. Trask et al., Hum. Mol. Genet.7, 13 (1998).
37
J. M. Carlton et al., Nature419, 512 (2002).
38
M. J. Gardner et al., Nature419, 498 (2002).
39
D. Durand, Trends Genet.19, 2 (2003).
40
S. P. Otto, J. Whitton, Annu. Rev. Genet.34, 401 (2000).
41
R. Friedman, A. L. Hughes, Mol. Biol. Evol.20, 154 (2003).
42
J. E. Bowers, B. A. Chapman, J. Rong, A. H. Paterson, Nature422, 433 (2003).
43
K. Wolfe, D. Shields, Nature387, 708 (1997).
44
A. McLysaght, K. Hokamp, K. H. Wolfe, Nature Genet.31, 200 (2002).
45
X. Gu, Y. Wang, J. Gu, Nature Genet.31, 205 (2002).
46
N. El-Mabrouk, D. Sankoff, SIAM (Soc. Industr. Appl. Math.) J. Comput.32, 745 (2003).
47
D. Sankoff, Bioinformatics15, 909 (1999).
48
L. Zhang, B. Ma, L. Wang, Y. Xu, Bioinformatics19, in press.
49
W. Ramakrishna et al., Genetics162, 1389 (2002).
50
H. Ranson et al., Science298, 179 (2002).
51
P. Dehal et al., Science293, 104 (2001).
52
P. Stankiewicz, J. R. Lupski, Trends Genet.18, 74 (2002).
53
M. Lynch, J. S. Conery, Science290, 1151 (2000).
54
G. Liu et al., Genome Res.13, 358 (2003).
55
M. A. Batzer, P. L. Deininger, Nature Rev. Genet.3, 370 (2002).
56
R. J. Mural et al., Science296, 1661 (2002).
57
P. SanMiguel, B. S. Gaut, A. Tikhonov, Y. Nakajima, J. L. Bennetzen, Nature Genet.20, 43 (1998).
58
B. S. Gaut, M. Le Thierry d'Ennequin, A. S. Peek, M. C. Sawkins, Proc. Natl. Acad. Sci. U.S.A.97, 7008 (2000).
59
K. M. Devos, J. K. Brown, J. L. Bennetzen, Genome Res.12, 1075 (2002).
60
B. Charlesworth, C. H. Langley, W. Stephan, Genetics112, 947 (1986).
61
See www.genome.ucsc.edu.
62
L. W. Hillieret al., Nature424, 157 (2003).
63
See www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Genome.
64
We thank our colleagues for access to unpublished data in the preparation of this review and R. Clark for technical assistance in the preparation of display items. E.E.E. is supported by NIH grants (HG02385, GM58815, and HD43569). D.S. holds the Canada Research Chair in Mathematical Genomics and is a Fellow of the Canadian Institute for Advanced Research. We apologize to all colleagues whose work we could not cite because of space constraints.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 301 | Issue 5634
8 August 2003

Submission history

Published in print: 8 August 2003

Permissions

Request permissions for this article.

Authors

Affiliations

Evan E. Eichler* [email protected]
Department of Genetics, Center for Human Genetics and Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH 44106, USA.
David Sankoff
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, ON Canada, K1N 6N5.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Phylogenomic analyses provide insights into primate evolution, Science, 380, 6648, (913-924), (2023)./doi/10.1126/science.abn6919
    Abstract
  2. Genome-wide characterization of Alfin-like (AL) genes in apple and functional identification of MdAL4 in response to drought stress, Plant Cell Reports, (2023).https://doi.org/10.1007/s00299-022-02966-8
    Crossref
  3. Cell Compartment-Specific Folding of Ty1 Long Terminal Repeat Retrotransposon RNA Genome, Viruses, 14, 9, (2007), (2022).https://doi.org/10.3390/v14092007
    Crossref
  4. Genome-Wide Analysis and Expression Profiles of Ethylene Signal Genes and Apetala2/Ethylene-Responsive Factors in Peanut (Arachis hypogaea L.), Frontiers in Plant Science, 13, (2022).https://doi.org/10.3389/fpls.2022.828482
    Crossref
  5. Karyotype Evolution of Talking Thorny Catfishes Anadoras (Doradidae, Astrodoradinae): A Process Mediated by Structural Rearrangements and Intense Reorganization of Repetitive DNAs, Cytogenetic and Genome Research, 162, 1-2, (64-75), (2022).https://doi.org/10.1159/000523747
    Crossref
  6. Chromosome‐level genome assembly for takin ( Budorcas taxicolor ) provides insights into its taxonomic status and genetic diversity , Molecular Ecology, 32, 6, (1323-1334), (2022).https://doi.org/10.1111/mec.16483
    Crossref
  7. A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability , GigaScience, 11, (2022).https://doi.org/10.1093/gigascience/giac059
    Crossref
  8. Decay of homologous chromosome pairs and discovery of males in the thelytokous fungus-growing ant Mycocepurus smithii, Scientific Reports, 12, 1, (2022).https://doi.org/10.1038/s41598-022-08537-x
    Crossref
  9. Temperature acclimation in hot-spring snakes and the convergence of cold response, The Innovation, 3, 5, (100295), (2022).https://doi.org/10.1016/j.xinn.2022.100295
    Crossref
  10. The Complexity of Finding Common Partitions of Genomes with Predefined Block Sizes, Comparative Genomics, (105-123), (2022).https://doi.org/10.1007/978-3-031-06220-9_7
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media