Advertisement
No access
Research Articles

Detection of the Intrinsic Size of Sagittarius A* Through Closure Amplitude Imaging

Science
30 Apr 2004
Vol 304, Issue 5671
pp. 704-708

Abstract

We have detected the intrinsic size of Sagittarius A*, the Galactic center radio source associated with a supermassive black hole, showing that the short-wavelength radio emission arises from very near the event horizon of the black hole. Radio observations with the Very Long Baseline Array show that the source has a size of 24 ± 2 Schwarzschild radii at 7-millimeter wavelength. In one of eight 7-millimeter epochs, we also detected an increase in the intrinsic size of \( \(60_{-17}^{+25}\%\) \). These observations place a lower limit to the mass density of Sagittarius A* of 1.4 × 104 solar masses per cubic astronomical unit.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (bower.som.pdf)

References and Notes

1
F. Melia, H. Falcke, Annu. Rev. Astron. Astrophys.39, 309 (2001).
2
A. M. Ghezet al., Astrophys. J.586, 127L (2003).
3
R. Schödelet al., Astrophys. J.596, 1015 (2003).
4
H. Falckeet al., Astrophys. J.499, 731 (1998).
5
R. Genzelet al., Nature425, 934 (2003).
6
A. M. Ghezet al., Astrophys. J.601, 159L (2004).
7
F. K. Baganoffet al., Nature413, 45 (2001).
8
G. C. Bower, H. Falcke, R. J. Sault, D. C. Backer, Astrophys. J.571, 843 (2002).
9
G. C. Bower, M. C. H. Wright, H. Falcke, D. C. Backer, Astrophys. J.588, 331 (2003).
10
H. Falcke, F. Melia, E. Agol, Astrophys. J.528, 13L (2000).
11
W. Goss, R. Brown, K. Lo, Astron. Nachr.324 (suppl.), 497 (2003).
12
T. J. W. Lazio, J. M. Cordes, Astrophys. J.505, 715 (1998).
13
R. Narayan, J. Goodman, Mon. Not. R. Astron. Soc.238, 963 (1989).
14
P. N. Wilkinson, R. Narayan, R. E. Spencer, Mon. Not. R. Astron. Soc.269, 67 (1994).
15
K. M. Desai, A. L. Fey, Astrophys. J. Supp. Ser.133, 395 (2001).
16
A. S. Trotter, J. M. Moran, L. F. Rodriguez, Astrophys. J.493, 666 (1998).
17
K. Y. Lo, Z. Q. Shen, J. H. Zhao, P. T. P. Ho, Astrophys. J.508, 61L (1998).
18
We assume for Sgr A* a black hole mass of 4 × 106 M and a distance of 8.0 kpc (2). The latter implies that 0.1 milli–arc sec = 0.8 AU = 1.1 × 1013 cm. Together, these quantities imply a Schwarzschild radius Rs = 2GM/c 2 = 1.2 × 1012 cm = 0.08 AU = 0.01 milli–arc sec, where G is Newton's gravitational constant.
19
S. S. Doelemanet al., Astron. J.121, 2610 (2001).
20
R. Herrnstein, J.-H. Zhao, G. C. Bower, W. M. Goss, Astron. J., in press.
21
G. C. Bower, D. C. Backer, R. A. Sramek, Astrophys. J.558, 127 (2001).
22
E. W. Greisen, Information Handling in Astronomy: Historical Vistas (Kluwer Academic Publishers, Dordrecht, Netherlands, 2003), pp. 109–126.
23
A. E. E. Rogers, S. S. Doeleman, J. M. Moran, Astron. J.109, 1391 (1995).
24
A. R. Thompson, J. M. Moran, G. W. Swenson, Interferometry and Synthesis in Radio Astronomy (Wiley, New York, 2001).
25
L98 determined a scattering law \( \({\sigma}_{\mathrm{axis}}={\sigma}_{\mathrm{axis}}^{1\mathrm{cm}}{\ }{\lambda}_{\mathrm{axis}}^{{\alpha}}\) \), where axis is either major or minor, λ is given in cm, \( \({\sigma}_{\mathrm{major}}^{1\mathrm{cm}}=1.43{\pm}0.02\) \) milli–arc sec, and \( \({\sigma}_{\mathrm{minor}}^{1\mathrm{cm}}=0.76{\pm}0.05\) \) milli–arc sec. α is the index of the scattering law and it is assumed to be 2 for the strong scattering case. L98 found αmajor = 1.99 ± 0.03. The major axis is oriented almost purely east-west at a position angle of 80° east of north.
26
F. Yusef-Zadeh, W. Cotton, M. Wardle, F. Melia, D. A. Roberts, Astrophys. J.434, 63L (1994).
27
T. Beckert, W. J. Duschl, Astron. Astrophys.328, 95 (1997).
28
R. D. Blandford, A. Konigl, Astrophys. J.232, 34 (1979).
29
H. Falcke, S. Markoff, Astron. Astrophys.362, 113 (2000).
30
F. Melia, Astrophys. J.426, 577 (1994).
31
R. Narayan, R. Mahadevan, J. E. Grindlay, R. G. Popham, C. Gammie, Astrophys. J.492, 554 (1998).
32
F. Yuan, E. Quataert, R. Narayan, Astrophys. J.598, 301 (2003).
33
M. E. Nord, T. J. W. Lazio, N. E. Kassim, W. M. Goss, N. Duric, Astrophys. J.601, 51L (2004).
34
J. Zhaoet al., Astrophys. J.586, L29 (2003).
35
A. Broderick, R. Blandford, Mon. Not. R. Astron. Soc.342, 1280 (2003).
36
D. C. Backer, R. A. Sramek, Astrophys. J.524, 805 (1999).
37
M. J. Reid, A. C. S. Readhead, R. C. Vermeulen, R. N. Treuhaft, Astrophys. J.524, 816 (1999).
38
M. Reidet al., Astron. Nachr.324, S1 (2003).
39
E. Maoz, Astrophys. J.494, 181L (1998).
40
The National Radio Astronomy Observatory is a facility of NSF, operated under cooperative agreement by Associated Universities, Incorporated.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 304 | Issue 5671
30 April 2004

Article versions

You are viewing the most recent version of this article.

Submission history

Received: 25 November 2003
Accepted: 22 March 2004
Published in print: 30 April 2004

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/1094023/DC1
SOM Text
Figs. S1 to S4
Tables S1 to S3
References

Authors

Affiliations

Geoffrey C. Bower* [email protected]
Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720, USA.
Heino Falcke
Radio Observatory Westerbork, ASTRON, Post Office Box 2, 7990 AA Dwingeloo, Netherlands.
Astronomy Department, University of Nijmegen, Postbus 9010, 6500 GL Nijmegen, Netherlands.
Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany.
Robeson M. Herrnstein
Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027, USA.
Jun-Hui Zhao
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138, USA.
W. M. Goss
National Radio Astronomy Observatory, Array Operations Center, Post Office Box O, Socorro, NM 87801, USA.
Donald C. Backer
Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Monitoring the Size and Flux Density of Sgr A* during the Active State in 2019 with East Asian VLBI Network, Galaxies, 11, 2, (46), (2023).https://doi.org/10.3390/galaxies11020046
    Crossref
  2. First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration, The Astrophysical Journal Letters, 930, 2, (L13), (2022).https://doi.org/10.3847/2041-8213/ac6675
    Crossref
  3. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, The Astrophysical Journal Letters, 930, 2, (L12), (2022).https://doi.org/10.3847/2041-8213/ac6674
    Crossref
  4. First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole, The Astrophysical Journal Letters, 930, 2, (L16), (2022).https://doi.org/10.3847/2041-8213/ac6672
    Crossref
  5. First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole, The Astrophysical Journal Letters, 930, 2, (L14), (2022).https://doi.org/10.3847/2041-8213/ac6429
    Crossref
  6. The Intrinsic Structure of Sagittarius A* at 1.3 cm and 7 mm, The Astrophysical Journal, 926, 2, (108), (2022).https://doi.org/10.3847/1538-4357/ac4165
    Crossref
  7. Nobel Lecture: A forty-year journey, Reviews of Modern Physics, 94, 2, (2022).https://doi.org/10.1103/RevModPhys.94.020501
    Crossref
  8. Unveiling the nature of SgrA* with the geodesic motion of S-stars, Journal of Cosmology and Astroparticle Physics, 2022, 03, (007), (2022).https://doi.org/10.1088/1475-7516/2022/03/007
    Crossref
  9. The road toward imaging a black hole: A personal perspective, Natural Sciences, 2, 4, (2022).https://doi.org/10.1002/ntls.20220031
    Crossref
  10. First Space-VLBI Observations of Sagittarius A*, The Astrophysical Journal Letters, 922, 2, (L28), (2021).https://doi.org/10.3847/2041-8213/ac3917
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media