Advertisement
No access
Reports

Mass-Independent Sulfur Isotopic Compositions in Stratospheric Volcanic Eruptions

Science
5 Jan 2007
Vol 315, Issue 5808
pp. 84-87

Abstract

The observed mass-independent sulfur isotopic composition (Δ33S) of volcanic sulfate from the Agung (March 1963) and Pinatubo (June 1991) eruptions recorded in the Antarctic snow provides a mechanism for documenting stratospheric events. The sign of Δ33S changes over time from an initial positive component to a negative value. Δ33S is created during photochemical oxidation of sulfur dioxide to sulfuric acid on a monthly time scale, which indicates a fast process. The reproducibility of the results reveals that Δ33S is a reliable tracer to chemically identify atmospheric processes involved during stratospheric volcanism.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (baroni.som.pdf)

References and Notes

1
G. Zielinski, Quat. Sci. Rev.19, 417 (2000), and references therein.
2
S. Bekki, J. A. Pyle, J. Geophys. Res.99, 18861 (1994).
3
G. J. S. Bluth, C. C. Schnetzler, A. J. Krueger, L. S. Walter, Nature366, 327 (1993).
4
The deviation from the mass-dependent relationships is calculated by the following equations: Δ33S = δ33S – 1000*[(1 + δ34S/1000)0,515 – 1] and Δ36S = δ36S – 1000*[(1 + δ34S/1000)1,91 – 1]. Considering the small size of the samples, our analytical accuracy, with a 2σ uncertainty, is equal to 0.12‰ for Δ33S and varies from 0.64 to 1.63‰ for Δ36S. Only |Δ33S| > 0.12‰ and |Δ36S| > 0.64‰ are considered as diagnostic of MIF in the present study. Uncertainties (2σ) are 0.07, 0.19, and 0.53 to 1.59‰ for δ33S, δ34S, and δ36S, respectively.
5
J. Farquhar, H. Bao, M. H. Thiemens, Science289, 756 (2000).
6
J. Farquhar, B. A. Wing, Earth Planet. Sci. Lett.213, 1 (2003).
7
A. A. Pavlov, J. F. Kasting, Astrobiology2, 27 (2002).
8
J. Farquhar, J. Savarino, S. Airieau, M. H. Thiemens, J. Geophys. Res.106, 32829 (2001).
9
J. Farquhar, J. Savarino, T. L. Jackson, M. H. Thiemens, Nature404, 50 (2000).
10
H. Ohmoto, Y. Watanabe, H. Ikemi, S. R. Poulson, B. E. Taylor, Nature442, 908 (2006).
11
A. Romero, M. H. Thiemens, J. Geophys. Res.108, (2003).
12
J. Savarino, A. Romero, J. Cole-Dai, S. Bekki, M. H. Thiemens, Geophys. Res. Lett.30, (2003).
13
S. D. Doiron, Z. Scott, G. J. S. Bluth, C. C. Schnetzler, A. J. Krueger, EOS Trans. Am. Geophys. Union72, 489 (1991).
14
A. A. Pavlov, M. J. Mills, O. B. Toon, Geophys. Res. Lett.32, (2005).
15
Materials and methods are available as supporting material on Science Online.
16
M. R. Legrand, R. J. Delmas, Atmos. Environ.18, 1867 (1984).
17
J. Cole-Dai, E. Mosley-Thompson, Ann. Glaciol.29, 99 (1999).
18
M. Legrand, D. Wagenbach, J. Geophys. Res.104, 1581 (1999).
19
N. Patris, R. J. Delmas, J. Jouzel, J. Geophys. Res.105, 7071 (2000).
20
A. W. Castleman Jr., H. R. Munkelwitz, B. Manowitz, Tellus26, 222 (1974).
21
F.-Y. Leung, A. J. Colussi, M. R. Hoffmann, J. Phys. Chem. A105, 8073 (2001).
22
J. B. Burkholder, S. McKeen, Geophys. Res. Lett.24, 3201 (1997).
23
S. Ono et al., Earth Planet. Sci. Lett.213, 15 (2003).
24
S. J. Mojzsis, C. D. Coath, J. P. Greenwood, K. D. McKeegan, T. M. Harrison, Geochim. Cosmochim. Acta67, 1635 (2003).
25
K. Chung, J. G. Calvert, J. W. Bottenheim, Int. J. Chem. Kinet.7, 161 (1975).
26
E. Castellano et al., J. Geophys. Res.110, (2005).
27
We acknowledge useful discussions with S. Bekki and thank the Conseil Régional Rhônes-Alpes for partially supporting travel expenses for M.B. J.S. acknowledges the Balzan Foundation for financial support; C. Lorius and the Institut National des Sciences de l'Univers (INSU) for mass spectrometry acquisition; the French Polar Institute and M. Legrand (Institut Polaire Francais Paul Emile Victor program DC17) for logistical support in Antarctica; the CNRS, under its Programme International de Coopération Scientifique; and the INSU Programme National de Chimie Atmosphérique. The NSF Office of Polar Programs provided financial support for M.H.T. We also thank J. McCabe and U. Morgenstern for helping J.S. to dig the snow pit.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 315 | Issue 5808
5 January 2007

Submission history

Received: 26 June 2006
Accepted: 15 November 2006
Published in print: 5 January 2007

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/315/5808/84/DC1
Materials and Methods
SOM Text
Fig. S1
Tables S1 and S2
References

Authors

Affiliations

Mélanie Baroni* [email protected]
Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS/Université Joseph Fourier, 38400 St. Martin d'Hères, France.
Mark H. Thiemens
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093–0356, USA.
Robert J. Delmas
Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS/Université Joseph Fourier, 38400 St. Martin d'Hères, France.
Joël Savarino* [email protected]
Laboratoire de Glaciologie et Géophysique de l'Environnement, CNRS/Université Joseph Fourier, 38400 St. Martin d'Hères, France.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected] (M.B.); [email protected] (J.S.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Deglacial volcanism and reoxygenation in the aftermath of the Sturtian Snowball Earth, Science Advances, 9, 36, (2023)./doi/10.1126/sciadv.adh9502
    Abstract
  2. Neoarchean carbonate–associated sulfate records positive Δ33S anomalies, Science, 346, 6210, (739-741), (2021)./doi/10.1126/science.1258211
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media