Advertisement

Economic Ancient DNA Sequencing

Analysis of ancient DNA is often limited by the availability of ancient material for sequencing. Briggs et al. (p. 318; see the news story by Pennisi) describe a method of ancient DNA sequence retrieval that greatly reduces shotgun sequencing costs while avoiding the many difficulties associated with direct PCR-based approaches. They generated five complete and one near-complete Neandertal mitochondrial DNA genomes, which would have been economically impossible with a simple shotgun approach. Analysis of these genomes shows that Neandertal populations had a much smaller effective population size than modern humans or great apes.

Abstract

Analysis of Neandertal DNA holds great potential for investigating the population history of this group of hominins, but progress has been limited due to the rarity of samples and damaged state of the DNA. We present a method of targeted ancient DNA sequence retrieval that greatly reduces sample destruction and sequencing demands and use this method to reconstruct the complete mitochondrial DNA (mtDNA) genomes of five Neandertals from across their geographic range. We find that mtDNA genetic diversity in Neandertals that lived 38,000 to 70,000 years ago was approximately one-third of that in contemporary modern humans. Together with analyses of mtDNA protein evolution, these data suggest that the long-term effective population size of Neandertals was smaller than that of modern humans and extant great apes.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (appendix1.txt)
File (briggs.som.pdf)

References and Notes

1
Excoffier L., Curr. Biol. 16, R650 (2006).
2
Krause J., et al., Nature 449, 902 (2007).
3
Serre D., et al., PLoS Biol. 2, E57 (2004).
4
Paabo S., et al., Annu. Rev. Genet. 38, 645 (2004).
5
Green R. E., et al., Cell 134, 416 (2008).
6
Gilbert M. T., et al., Proc. Natl. Acad. Sci. U.S.A. 105, 8327 (2008).
7
Gilbert M. T., et al., Science 320, 1787 (2008).
8
Anderung C., Persson P., Bouwman A., Elburg R., Gotherstrom A., Forensic Sci. Int. Genet. 2, 104 (2008).
9
Blow M. J., et al., Genome Res. 18, 1347 (2008).
10
Briggs A. W., et al., Proc. Natl. Acad. Sci. U.S.A. 104, 14616 (2007).
11
Brotherton P., et al., Nucleic Acids Res. 35, 5717 (2007).
12
Mackelprang R., Rubin E. M., Science 321, 211 (2008).
13
Schmitz R. W., et al., Proc. Natl. Acad. Sci. U.S.A. 99, 13342 (2002).
14
Lalueza-Fox C., et al., Mol. Biol. Evol. 22, 1077 (2005).
15
Skinner A. R., et al., Appl. Radiat. Isot. 62, 219 (2005).
16
Hofreiter M., Jaenicke V., Serre D., Haeseler Av A., Paabo S., Nucleic Acids Res. 29, 4793 (2001).
17
Ovchinnikov I. V., et al., Nature 404, 490 (2000).
18
Andrews R. M., et al., Nat. Genet. 23, 147 (1999).
19
Ingman M., Kaessmann H., Pääbo S., Gyllensten U., Nature 408, 708 (2000).
20
Anderson C. N. K., Ramakrishnan U., Chan Y. L., Hadly E. A., Bioinformatics 21, 1733 (2005).
21
Excoffier L., Novembre J., Schneider S., J. Hered. 91, 506 (2000).
22
Drummond A. J., Rambaut A., BMC Evol. Biol. 7, 214 (2007).
23
Atkinson Q. D., Gray R. D., Drummond A. J., Mol. Biol. Evol. 25, 468 (2008).
24
Jesus F. F., Wilkins J. F., Solferini V. N., Wakeley J., Genet. Mol. Res. 5, 466 (2006).
25
Ohta T., Nature 246, 96 (1973).
26
Kosakovsky Pond S. L., Frost S. D. W., Mol. Biol. Evol. 22, 478 (2004).
27
Gnirke A., et al., Nat. Biotechnol. 27, 182 (2009).
28
Hodges E., et al., Nat. Genet. 39, 1522 (2007).
29
Noonan J. P., et al., Science 314, 1113 (2006).
30
Ronquist F., Huelsenbeck J. P., Bioinformatics 19, 1572 (2003).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 325 | Issue 5938
17 July 2009

Submission history

Received: 3 April 2009
Accepted: 3 June 2009
Published in print: 17 July 2009

Permissions

Request permissions for this article.

Acknowledgments

We thank P. Johnson, M. Knapp, A.-S. Malaspinas, M. Meyer, J. Sullivan, M. Slatkin, and anonymous reviewers for comments; the Croatian Academy of Sciences and Arts and the Berlin-Brandenburg Academy of Sciences for logistic and scientific support; and the Presidential Innovation Fund of the Max Planck Society for financial support. The government of the Principado de Asturias funded excavations at the El Sidron site. C.L.-F. was supported by the Spanish Ministry of Education and Science and J.M.G. by an NSF international postdoctoral fellowship (OISE-0754461). Sequences are deposited at the EBI (European Bioinformatics Institute) nucleotide database with the following accession numbers: Neandertal 1 (Feldhofer 1), FM865407; Neandertal 2 (Feldhofer 2), FM865408; Sidron 1253, FM865409; Vindija 33.25, FM865410; Mezmaiskaya 1, FM865411.

Authors

Affiliations

Adrian W. Briggs* [email protected]
Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Jeffrey M. Good
Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Richard E. Green
Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Johannes Krause
Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Tomislav Maricic
Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Udo Stenzel
Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
Carles Lalueza-Fox
Institute of Evolutionary Biology, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
Pavao Rudan
Croatian Academy of Sciences and Arts, Zrinski trg 11, HR-10000 Zagreb, Croatia.
Dejana Brajković
Croatian Academy of Sciences and Arts, Institute for Quaternary Paleontology and Geology, Ante Kovačića 5, HR-10000 Zagreb, Croatia.
Željko Kućan
Croatian Academy of Sciences and Arts, Zrinski trg 11, HR-10000 Zagreb, Croatia.
Ivan Gušić
Croatian Academy of Sciences and Arts, Zrinski trg 11, HR-10000 Zagreb, Croatia.
Ralf Schmitz
Landschaftsverband Rheinland Landesmuseum, D-53115 Bonn, Germany.
Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Germany.
Vladimir B. Doronichev
Laboratory of Prehistory, St. Petersburg, Russia.
Liubov V. Golovanova
Laboratory of Prehistory, St. Petersburg, Russia.
Marco de la Rasilla
Área de Prehistoria Departamento de Historia Universidad de Oviedo, Oviedo, Spain.
Javier Fortea
Área de Prehistoria Departamento de Historia Universidad de Oviedo, Oviedo, Spain.
Antonio Rosas
Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
Svante Pääbo
Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia, Science, 361, 6401, (511-516), (2021)./doi/10.1126/science.aar8486
    Abstract
  2. A high-coverage Neandertal genome from Vindija Cave in Croatia, Science, 358, 6363, (655-658), (2021)./doi/10.1126/science.aao1887
    Abstract
  3. Neandertal and Denisovan DNA from Pleistocene sediments, Science, 356, 6338, (605-608), (2021)./doi/10.1126/science.aam9695
    Abstract
  4. The makers of the Protoaurignacian and implications for Neandertal extinction, Science, 348, 6236, (793-796), (2021)./doi/10.1126/science.aaa2773
    Abstract
  5. Resurrecting Surviving Neandertal Lineages from Modern Human Genomes, Science, 343, 6174, (1017-1021), (2021)./doi/10.1126/science.1245938
    Abstract
  6. Complete Mitochondrial Genomes of Ancient Canids Suggest a European Origin of Domestic Dogs, Science, 342, 6160, (871-874), (2021)./doi/10.1126/science.1243650
    Abstract
  7. A Paleogenomic Perspective on Evolution and Gene Function: New Insights from Ancient DNA, Science, 343, 6169, (2021)./doi/10.1126/science.1236573
    Abstract
  8. A High-Coverage Genome Sequence from an Archaic Denisovan Individual, Science, 338, 6104, (222-226), (2021)./doi/10.1126/science.1224344
    Abstract
  9. Tenfold Population Increase in Western Europe at the Neandertal–to–Modern Human Transition, Science, 333, 6042, (623-627), (2021)./doi/10.1126/science.1206930
    Abstract
  10. Targeted Investigation of the Neandertal Genome by Array-Based Sequence Capture, Science, 328, 5979, (723-725), (2021)./doi/10.1126/science.1188046
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media