Advertisement

Shivering Viromes

Despite its icy reputation, freshwater ponds and lakes do occur in Antarctica, and open freshwater can be found for a few brief weeks during the austral summer. The ecology of these lakes is, as expected, rather specialized to cope with the extreme seasonal conditions. In a metagenomic study, López-Bueno et al. (p. 858) inspected the virus community of Lake Limnopolar on Livingston Island and found an unexpectedly rich genetic diversity. A dominant group of previously unidentified single-stranded DNA viruses was found, and a striking shift after ice-melt in spring from single-stranded to double-stranded DNA viruses was observed, probably as their algal hosts started to bloom with increasing daylight hours. The diverse viruses may donate specialized genes that host organisms can also exploit to aid their survival under winter extremes of heat and light deprivation.

Abstract

Viruses are the most abundant biological entities and can control microbial communities, but their identity in terrestrial and freshwater Antarctic ecosystems is unknown. The genetic structure of an Antarctic lake viral community revealed unexpected genetic richness distributed across the highest number of viral families that have been found to date in aquatic viral metagenomes. In contrast to other known aquatic viromes, which are dominated by bacteriophage sequences, this Antarctic virus assemblage had a large proportion of sequences related to eukaryotic viruses, including phycodnaviruses and single-stranded DNA (ssDNA) viruses not previously identified in aquatic environments. We also observed that the transition from an ice-covered lake in spring to an open-water lake in summer led to a change from a ssDNA– to a double-stranded DNA–virus-dominated assemblage, possibly reflecting a seasonal shift in host organisms.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (lopez-bueno.som.pdf)

References and Notes

1
Peck L. S., et al., Polar Biol. 28, 351 (2005).
2
Convey P., Stevens M. I., Science 317, 1877 (2007).
3
Convey P., et al., Biol. Rev. Cambridge Philos. Soc. 83, 103 (2008).
4
Laybourn-Parry J., Pearce D. A., Philos. Trans. R. Soc. London Ser. B Biol. Sci. 362, 2273 (2007).
5
Pearce D. A., Wilson W. H., Antarct. Sci. 15, 319 (2003).
6
Cowan D. A., Tow L. A., Annu. Rev. Microbiol. 58, 649 (2004).
7
Laybourn-Parry J., Science 324, 1521 (2009).
8
Suttle C. A., Nat. Rev. Microbiol. 5, 801 (2007).
9
Fuhrman J. A., Nature 399, 541 (1999).
10
Mann N. H., Cook A., Millard A., Bailey S., Clokie M., Nature 424, 741 (2003).
11
Williamson S. J., et al., PLoS One 3, e1456 (2008).
12
Angly F. E., et al., PLoS Biol. 4, e368 (2006).
13
Dinsdale E. A., et al., Nature 452, 629 (2008).
14
Toro M., et al., Polar Biol. 30, 635 (2007).
15
Sawstrom C., Lisle J., Anesio A. M., Priscu J. C., Laybourn-Parry J., Extremophiles 12, 167 (2008).
16
Kepner R. L., Wharton R. A., Suttle C. A., Limnol. Oceanogr. 43, 1754 (1998).
17
Wilson W. H., Lane D., Pearce D. A., Ellis-Evans J. C., Polar Biol. 23, 657 (2000).
18
Materials and methods are available as supporting material on Science Online.
19
Chown S. L., Convey P., Philos. Trans. R. Soc. London Ser. B Biol. Sci. 362, 2307 (2007).
20
Fuhrman J. A., et al., Proc. Natl. Acad. Sci. U.S.A. 105, 7774 (2008).
21
Desnues C., et al., Nature 452, 340 (2008).
22
Filee J., Tetart F., Suttle C. A., Krisch H. M., Proc. Natl. Acad. Sci. U.S.A. 102, 12471 (2005).
23
Kim K. H., et al., Appl. Environ. Microbiol. 74, 5975 (2008).
24
Derelle E., et al., PLoS One 3, e2250 (2008).
25
Sullivan M. B., Coleman M. L., Weigele P., Rohwer F., Chisholm S. W., PLoS Biol. 3, e144 (2005).
26
Breitbart M., et al., Environ. Microbiol. 11, 16 (2009).
27
Rohwer F., Thurber R. V., Nature 459, 207 (2009).
28
Laybourn-Parry J., Sommaruga J. S. H. R., Freshwater Biol. 46, 1279 (2001).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 326 | Issue 5954
6 November 2009

Submission history

Received: 17 July 2009
Accepted: 3 September 2009
Published in print: 6 November 2009

Permissions

Request permissions for this article.

Acknowledgments

We thank the Maritime Technology Unit (CSIC) and Las Palmas crew (Spanish Navy) for the logistic help and support that made this expedition possible. We also thank M. Toro, A. Camacho, and other members of the Limnopolar Project for help and discussions; A. Alejo for helpful comments and reviewing the manuscript; and M. Pignatelli for technical support. This work was funded by grants from the Spanish Ministry of Science and Innovation (CGL2005-06549-C02-01/ANT, CGL2007-29843-E/ANT, CTM2008-05134-E/ANT, and BFU2008-04501-E). Spring and summer viral metagenomes from the Antarctic Lake Limnopolar have been submitted to GenBank and assigned the genome project accession number 34669. The metagenomes are also publicly accessible from the ftp server of the SEED public database (ftp://ftp.theseed.org/metagenomes) under the project accession numbers 4441778.3 and 4441558.3 for the spring and summer viromes, respectively. PCR-obtained sequences encoding the gp23 protein of Antarctic T4-phages and the MCP protein of Antarctic phycodnavirus have been also deposited at GenBank as “environmental sequences” and are listed under accession numbers FJ791185-247 and FJ791175-84, respectively.

Authors

Affiliations

Alberto López-Bueno
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)–Universidad Autónoma de Madrid, Madrid, Spain.
Javier Tamames
Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, València, Spain.
Centro Superior de Investigación en Salud Pública, Consellería de Sanidad, Generalitat Valenciana, València, Spain.
Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Barcelona, Spain.
David Velázquez
Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.
Andrés Moya
Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, València, Spain.
Centro Superior de Investigación en Salud Pública, Consellería de Sanidad, Generalitat Valenciana, València, Spain.
Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública, Barcelona, Spain.
Antonio Quesada
Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain.
Antonio Alcamí* [email protected]
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)–Universidad Autónoma de Madrid, Madrid, Spain.
Department of Medicine, University of Cambridge, Cambridge CB2 2QQ, UK.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Biodiversity and distribution of polar freshwater DNA viruses, Science Advances, 1, 5, (2015)./doi/10.1126/sciadv.1400127
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media