Advertisement
No access
Reports

Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth

Science
6 May 2005
Vol 308, Issue 5723
pp. 841-844

Abstract

Ancient zircons from Western Australia's Jack Hills preserve a record of conditions that prevailed on Earth not long after its formation. Widely considered to have been a uniquely violent period geodynamically, the Hadean Eon [4.5 to 4.0 billion years ago (Ga)] has recently been interpreted by some as far more benign—possibly even characterized by oceans like those of the present day. Knowledge of the crystallization temperatures of the Hadean zircons is key to this debate. A thermometer based on titanium content revealed that these zircons cluster strongly at ∼700°C, which is indistinguishable from temperatures of granitoid zircon growth today and strongly suggests a regulated mechanism producing zircon-bearing rocks during the Hadean. The temperatures substantiate the existence of wet, minimum-melting conditions within 200 million years of solar system formation. They further suggest that Earth had settled into a pattern of crust formation, erosion, and sediment recycling as early as 4.35 Ga.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (watson.som.pdf)

References and Notes

1
W. Benz, W. L. Slattery, A. G. W. Cameron, Icarus66, 515 (1986).
2
K. Righter, M. J. Drake, Earth Planet. Sci. Lett.171, 383 (1999).
3
R. L. Armstrong, Philos. Trans. R. Soc. London Ser. A301, 443 (1981).
4
S. J. Mojzsis et al., Nature384, 55 (1996).
5
S. A. Bowring, I. Williams, Contrib. Mineral. Petrol.134, 3 (1999).
6
D. O. Froude et al., Nature304, 616 (1983).
7
W. Compston, R. T. Pidgeon, Nature321, 766 (1986).
8
Y. Amelin, D. C. Lee, A. N. Halliday, R. T. Pidgeon, Nature399, 252 (1999).
9
S. J. Mojzsis, T. M. Harrison, R. T. Pidgeon, Nature409, 178 (2001).
10
S. A. Wilde, J. W. Valley, W. H. Peck, C. M. Graham, Nature409, 175 (2001).
11
G. Turner, T. M. Harrison, G. Holland, S. J. Mojzsis, J. Gilmour, Science306, 89 (2004).
12
E. B. Watson, D. A. Wark, J. B. Thomas, in preparation.
13
B. T. Peppard, I. M. Steele, A. M. Davis, P. J. Wallace, A. T. Anderson, Am. Mineral.86, 1034 (2001).
14
L. Storm, F. S. Spear, J. Metamorph. Geol.23, 107 (2005).
15
J. Selverstone, G. Morteani, J.-M. Staude, J. Metamorph. Geol.9, 419 (1991).
16
R. L. Rudnicket al., in Proc. Seventh International Kimberlite Conference, Cape Town, South Africa, J. J. Gurney, S. R. Richardson, Eds. (Red Barn, Cape Town, South Africa, 1999), pp. 728-735.
17
S. S. Sorensen, J. Metamorph. Geol.6, 405 (1988).
18
D. A. Wark, A. T. Anderson, E. B. Watson, Eos Trans. AGU (joint assembly program and abstracts, 2004).
19
E. D. Ghent, M. Z. Stout, Contrib. Mineral. Petrol.86, 248 (1984).
20
F. J. Ryerson, E. B. Watson, Earth Planet. Sci. Lett.86, 225 (1987).
21
E. B. Watson, T. M. Harrison, Earth Planet. Sci. Lett.64, 295 (1983).
22
E. B. Watson, Contrib. Mineral. Petrol.70, 407 (1979).
23
The ion microprobe analyses were performed at Woods Hole Oceanographic Institution using a Cameca ims 3f. A primary (O-) ion-beam current of 5 nA was used in most cases, which resulted in a spot size of 15 to 20 μm. Four 30-s acquisition intervals at each spot resulted in a minimum detection limit (MDL) of ∼0.1 ppm Ti using the relatively low-abundance isotope 49Ti (5.5% of Ti). Titanium-48 (74% abundance) cannot be used for analysis of zircons with the ims 3f because of interfering 96Zr2+ (2.8% isotopic abundance). For this reason, previously published values for Ti content of zircons (32, 33) may be too high. The 2σ analytical uncertainty obtained with the ims 3f was ±20% and ±6%, respectively, at the 1- and 10-ppm levels (corresponding to temperatures of ∼570° and ∼740°C). The analytical error increases the ∼10° uncertainty in the thermometer itself (Fig. 1) to ∼16° at 570°C and ∼11° at 740°C.
24
N. Sleep, K. Zahnle, J. Geophys. Res.103, 28,529 (1998).
25
F. Holtz, A. Becker, M. Freise, W. Johannes, Contrib. Mineral. Petrol.141, 347 (2001).
26
Calculated Zr saturation temperatures (21) for the 19,034 analyses in the OZCHEM National Whole Rock Geochemistry GIS Database (https://www.ga.gov.au/products; includes Australia, Papua New Guinea, Antarctica, Solomon Islands, and New Zealand) between 40 and 80% SiO2 for which requisite data are available (21) yield a median of 780°C, with more than 80% of all calculated temperatures greater than the mean of our Hadean results (i.e., 696°C). If representative of the Hadean crustal average, then it is highly unlikely that the temperature distribution in Fig. 3 could reflect a limitation imposed by the Zr concentration of crustal rocks.
27
C. K. Brooks, Geochim. Cosmochim. Acta33, 357 (1969).
28
L. R. Wager, G. M. Brown, Layered Igneous Rocks (Oliver and Boyd, Edinburgh, 1968).
29
D. Trail, S. J. Mojzsis, T. M. Harrison, Geochim. Cosmochim. Acta68, A743 (2004).
30
R. Maas, P. D. Kinny, I. S. Williams, D. O. Froude, W. Compston, Geochim. Cosmochim. Acta56, 1281 (1992).
31
Water is required to depress the solidus to temperatures below ∼960°C—the dry solidus of rocks of broadly granitic character (3436).
32
E. A. Belousova, W. L. Griffin, S. Y. O'Reilly, N. I. Fisher, Contrib. Mineral. Petrol.143, 602 (2002).
33
P. W. O. Hoskin, Geochim. Cosmochim. Acta69, 637 (2005).
34
O. F. Tuttle, N. L. Bowen, Geol. Soc. Am. Mem.74 (1958).
35
W. C. Luth, R. H. Jahns, O. F. Tuttle, J. Geophys. Res.9, 759 (1964).
36
J. A. Whitney, J. Geol.83, 1 (1975).
37
C.-T. Lee, R. L. Rudnick, in Proc. Seventh International Kimberlite Conference, Cape Town, South Africa, J. J. Gurney, S. R. Richardson, Eds. (Red Barn, Cape Town, South Africa, 1999), pp. 503-521.
38
S. R. Taylor, S. M. McLennan, The Continental Crust: Its Composition and Evolution (Blackwell Scientific, Oxford, 1985).
39
G. B. Morgan VI, D. London, R. G. Luedke, J. Petrol.39, 601 (1998).
40
J. D. Webster, W. A. Duffield, Am. Mineral.76, 1628 (1991).
41
J. B. Lowenstern, M. A. Clynne, T. B. Bullen, J. Petrol.38, 1707 (1997).
42
J. D. Webster, R. D. Congdon, P. C. Lyons, Geochim. Cosmochim. Acta59, 711 (1995).
43
B. Hanson, J. W. Delano, D. J. Lindstrom, Am. Mineral.81, 1249 (1996).
44
I. N. Bindeman, J. W. Valley, J. Petrol.42, 1491 (2001).
45
N. W. Dunbar, P. R. Kyle, Am. Mineral.78, 612 (1993).
46
N. W. Dunbar, R. L. Hervig, J. Geophys. Res.97, 15129 (1992).
47
N. W. Dunbar, R. L. Hervig, J. Geophys. Res.97, 15151 (1992).
48
C. L. Harford, R. S. J. Sparks, A. E. Fallick, J. Petrol.44, 1503 (2003).
49
P. E. Izbekov, J. C. Eichelberger, B. V. Ivanov, J. Petrol.45, 2325 (2004).
50
P. A. Cawood, E. C. Leitch, Proc. Ocean Drill. Prog.156, 343 (1997).
51
We thank E. Baxter, R. Rudnick, L. Storm, F. Spear, and D. Wark for providing rock samples and/or zircon separates for the thermometry calibration, and M. Hamilton for the Skaergaard zircons. We also thank G. Layne (ion microprobe), D. Wark, S. Mojzsis, P. Holden, E. Q. Reid, Z. Bruce, S. Mussett, and J. Thomas for scientific discussions and assistance with analytical aspects. The work was supported at Rensselaer Polytechnic Institute by NSF grants EAR 0073752 and EAR 0440228 (to E.B.W.), at Australian National University by Australian Research Council grant DP0342709 (to T.M.H.), and at the University of California, Los Angeles, by grants from the NSF Earth Sciences: Instrumentation and Facilities (EAR/IF) program and NASA's Exobiology program and National Astrobiology Institute.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 308 | Issue 5723
6 May 2005

Submission history

Received: 9 February 2005
Accepted: 14 March 2005
Published in print: 6 May 2005

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/308/5723/841/DC1
Fig. S1

Authors

Affiliations

E. B. Watson* [email protected]
Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
T. M. Harrison
Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia.
Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Origin and implication of two newly identified peraluminous A-type granites in the early Paleozoic orogeny, Southeast Asia, Frontiers in Earth Science, 11, (2023).https://doi.org/10.3389/feart.2023.1137157
    Crossref
  2. Intracontinental deformation around the fixed tip of the continental-scale, strike-slip Tan–Lu fault zone in eastern China, Journal of the Geological Society, 180, 2, (2023).https://doi.org/10.1144/jgs2022-118
    Crossref
  3. I-type and S-type granites in the Earth’s earliest continental crust, Communications Earth & Environment, 4, 1, (2023).https://doi.org/10.1038/s43247-023-00731-7
    Crossref
  4. Exotic REE behaviors of zircon in the Koktokay No. 3 granitic pegmatite, Xinjiang, northwest China, Ore Geology Reviews, 154, (105329), (2023).https://doi.org/10.1016/j.oregeorev.2023.105329
    Crossref
  5. Incorporation of hydrogen into zircon through multi-coupling mechanisms and its geochemical implications, Lithos, 446-447, (107127), (2023).https://doi.org/10.1016/j.lithos.2023.107127
    Crossref
  6. A better understanding of Archean crustal evolution: exploring the sedimentary archive of the Singhbhum Craton, eastern India, Journal of Asian Earth Sciences, (105630), (2023).https://doi.org/10.1016/j.jseaes.2023.105630
    Crossref
  7. Co-variation of crustal thermal condition and thickness of the northeastern margin of Kazakhstan continent during the Late Paleozoic Siberia-Kazakhstan convergence and post-collisional extension, Journal of Asian Earth Sciences, 242, (105508), (2023).https://doi.org/10.1016/j.jseaes.2022.105508
    Crossref
  8. Temperature and Hf-O isotope correlations of young erupted zircons from Tengchong (SE Tibet): Assimilation fractional crystallization during monotonic cooling, Geoscience Frontiers, 14, 1, (101497), (2023).https://doi.org/10.1016/j.gsf.2022.101497
    Crossref
  9. Zircon U–Pb ages, Hf-O isotopes and trace elements of the multi-volcanism in the Ningwu ore district, eastern China: Implications for the magma evolution and fertility of iron oxide–apatite (IOA) deposits, Gondwana Research, 116, (149-167), (2023).https://doi.org/10.1016/j.gr.2022.12.009
    Crossref
  10. A REE-based zircon geothermometer based on improved lattice strain modeling of zircon-melt REE partition coefficients, Geochimica et Cosmochimica Acta, 346, (54-64), (2023).https://doi.org/10.1016/j.gca.2023.01.030
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media