Advertisement
No access
Research Article

The Amborella Genome and the Evolution of Flowering Plants

Amborella Genome Project [email protected], Victor A. Albert, W. Bradley Barbazuk, Claude W. dePamphilis, Joshua P. Der, James Leebens-Mack, Hong Ma, Jeffrey D. Palmer, Steve Rounsley, David Sankoff, Stephan C. Schuster, Douglas E. Soltis, Pamela S. Soltis, Susan R. Wessler, Rod A. Wing, Victor A. Albert, Jetty S. S. Ammiraju, W. Bradley Barbazuk, Srikar Chamala, Andre S. Chanderbali, Claude W. dePamphilis, Joshua P. Der, Ronald Determann, James Leebens-Mack, Hong Ma, Paula Ralph, Steve Rounsley, Stephan C. Schuster, Douglas E. Soltis, Pamela S. Soltis, Jason Talag, Lynn Tomsho, Brandon Walts, Stefan Wanke, Rod A. Wing, Victor A. Albert, W. Bradley Barbazuk, Srikar Chamala, Andre S. Chanderbali, Tien-Hao Chang, Ronald Determann, Tianying Lan, Douglas E. Soltis, Pamela S. Soltis, Siwaret Arikit, Michael J. Axtell, Saravanaraj Ayyampalayam, W. Bradley Barbazuk, James M. Burnette, III, Srikar Chamala, Emanuele De Paoli, Claude W. dePamphilis, Joshua P. Der, James C. Estill, Nina P. Farrell, Alex Harkess, Yuannian Jiao, James Leebens-Mack, Kun Liu, Wenbin Mei, Blake C. Meyers, Saima Shahid, Eric Wafula, Brandon Walts, Susan R. Wessler, Jixian Zhai, Xiaoyu Zhang, Victor A. Albert, Lorenzo Carretero-Paulet, Claude W. dePamphilis, Joshua P. Der, Yuannian Jiao, James Leebens-Mack, Eric Lyons, David Sankoff, Haibao Tang, Eric Wafula, Chunfang Zheng, Victor A. Albert, Naomi S. Altman, W. Bradley Barbazuk, Lorenzo Carretero-Paulet, Claude W. dePamphilis, Joshua P. Der, James C. Estill, Yuannian Jiao, James Leebens-Mack, Kun Liu, Wenbin Mei, Eric Wafula, Naomi S. Altman, Siwaret Arikit, Michael J. Axtell, Srikar Chamala, Andre S. Chanderbali, Feng Chen, Jian-Qun Chen, Vincent Chiang, Emanuele De Paoli, Claude W. dePamphilis, Joshua P. Der, Ronald Determann, Bruno Fogliani, Chunce Guo, Jesper Harholt, Alex Harkess, Claudette Job, Dominique Job, Sangtae Kim, Hongzhi Kong, James Leebens-Mack, Guanglin Li, Lin Li, Jie Liu, Hong Ma, Blake C. Meyers, Jongsun Park, Xinshuai Qi, Loïc Rajjou, Valérie Burtet-Sarramegna, Ron Sederoff, Saima Shahid, Douglas E. Soltis, Pamela S. Soltis, Ying-Hsuan Sun, Peter Ulvskov, Matthieu Villegente, Jia-Yu Xue, Ting-Feng Yeh, Xianxian Yu, Jixian Zhai, Juan J. Acosta, Victor A. Albert, W. Bradley Barbazuk, Riva A. Bruenn, Srikar Chamala, Alexandre de Kochko, Claude W. dePamphilis, Joshua P. Der, Luis R. Herrera-Estrella, Enrique Ibarra-Laclette, Matias Kirst, James Leebens-Mack, Solon P. Pissis, Valérie Poncet, Stephan C. Schuster, Douglas E. Soltis, Pamela S. Soltis, and Lynn TomshoAuthors Info & Affiliations
Science
20 Dec 2013
Vol 342, Issue 6165

Shaping Plant Evolution

Amborella trichopoda is understood to be the most basal extant flowering plant and its genome is anticipated to provide insights into the evolution of plant life on Earth (see the Perspective by Adams). To validate and assemble the sequence, Chamala et al. (p. 1516) combined fluorescent in situ hybridization (FISH), genomic mapping, and next-generation sequencing. The Amborella Genome Project (p. 10.1126/science.1241089) was able to infer that a whole-genome duplication event preceded the evolution of this ancestral angiosperm, and Rice et al. (p. 1468) found that numerous genes in the mitochondrion were acquired by horizontal gene transfer from other plants, including almost four entire mitochondrial genomes from mosses and algae.

Structured Abstract

Introduction

Darwin famously characterized the rapid rise and early diversification of flowering plants (angiosperms) in the fossil record as an “abominable mystery.” Identifying genomic changes that accompanied the origin of angiosperms is key to unraveling the molecular basis of biological innovations that contributed to their geologically near-instantaneous rise to ecological dominance.

Methods

We provide a draft genome for Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants and use phylogenomic and comparative genomic analyses to elucidate ancestral gene content and genome structure in the most recent common ancestor of all living angiosperms.

Results

We reveal that an ancient genome duplication predated angiosperm diversification. However, unlike all other sequenced angiosperm genomes, the Amborella genome shows no evidence of more recent, lineage-specific genome duplications, making Amborella particularly well suited to help interpret genomic changes after polyploidy in other angiosperms. The remarkable conservation of gene order (synteny) among the genomes of Amborella and other angiosperms has enabled reconstruction of the ancestral gene arrangement in eudicots (~75% of all angiosperms). An ancestral angiosperm gene set was inferred to contain at least 14,000 protein-coding genes; subsequent changes in gene content and genome structure across disparate flowering plant lineages are associated with the evolution of important crops and model species. Relative to nonangiosperm seed plants, 1179 gene lineages first appeared in association with the origin of the angiosperms. These include genes important in flowering, wood formation, and responses to environmental stress. Unlike other angiosperms, the Amborella genome lacks evidence for recent transposon insertions while retaining ancient and divergent transposons. The genome harbors an abundance of atypical lineage-specific 24-nucleotide microRNAs, with at least 27 regulatory microRNA families inferred to have been present in the ancestral angiosperm. Population genomic analysis of 12 individuals from across the small native range of Amborella in New Caledonia reveals geographic structure with conservation implications, as well as both a recent genetic bottleneck and high levels of genome diversity.

Discussion

The Amborella genome is a pivotal reference for understanding genome and gene family evolution throughout angiosperm history. Genome structure and phylogenomic analyses indicate that the ancestral angiosperm was a polyploid with a large constellation of both novel and ancient genes that survived to play key roles in angiosperm biology.

Abstract

Amborella trichopoda is strongly supported as the single living species of the sister lineage to all other extant flowering plants, providing a unique reference for inferring the genome content and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing the Amborella genome, we identified an ancient genome duplication predating angiosperm diversification, without evidence of subsequent, lineage-specific genome duplications. Comparisons between Amborella and other angiosperms facilitated reconstruction of the ancestral angiosperm gene content and gene order in the MRCA of core eudicots. We identify new gene families, gene duplications, and floral protein-protein interactions that first appeared in the ancestral angiosperm. Transposable elements in Amborella are ancient and highly divergent, with no recent transposon radiations. Population genomic analysis across Amborella’s native range in New Caledonia reveals a recent genetic bottleneck and geographic structure with conservation implications.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Text
Figs. S1 to S42
Tables S1 to S46
Additional Acknowledgment
References

Resources

File (1241089s2.xlsx)
File (amborella.sm.pdf)

References and Notes

1
C. Darwin, in Letter to Hooker, F. Darwin, A. C. Seward, Eds. (John Murray, London, UK, 1903).
2
Bell C. D., Soltis D. E., Soltis P. S., The age and diversification of the angiosperms re-revisited. Am. J. Bot. 97, 1296–1303 (2010).
3
Friis E. M., Pedersen K. R., Crane P. R., Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction. Palaeogeogr. Palaeocl. 232, 251–293 (2006).
4
Magallón S., Hilu K. W., Quandt D., Land plant evolutionary timeline: Gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. Am. J. Bot. 100, 556–573 (2013).
5
Doyle J. A., Molecular and fossil evidence on the origin of angiosperms. Annu. Rev. Earth Planet Sci. 40, 301–326 (2012).
6
Zhang N., Zeng L., Shan H., Ma H., Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms. New Phytol. 195, 923–937 (2012).
7
Jiao Y., Wickett N. J., Ayyampalayam S., Chanderbali A. S., Landherr L., Ralph P. E., Tomsho L. P., Hu Y., Liang H., Soltis P. S., Soltis D. E., Clifton S. W., Schlarbaum S. E., Schuster S. C., Ma H., Leebens-Mack J., dePamphilis C. W., Ancestral polyploidy in seed plants and angiosperms. Nature 473, 97–100 (2011).
8
Soltis D. E., Bell C. D., Kim S., Soltis P. S., Origin and early evolution of angiosperms. Ann. N. Y. Acad. Sci. 1133, 3–25 (2008).
9
Jansen R. K., Cai Z., Raubeson L. A., Daniell H., Depamphilis C. W., Leebens-Mack J., Müller K. F., Guisinger-Bellian M., Haberle R. C., Hansen A. K., Chumley T. W., Lee S. B., Peery R., McNeal J. R., Kuehl J. V., Boore J. L., Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. U.S.A. 104, 19369–19374 (2007).
10
Moore M. J., Bell C. D., Soltis P. S., Soltis D. E., Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc. Natl. Acad. Sci. U.S.A. 104, 19363–19368 (2007).
11
Moore M. J., Soltis P. S., Bell C. D., Burleigh J. G., Soltis D. E., Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Natl. Acad. Sci. U.S.A. 107, 4623–4628 (2010).
12
Moore M. J., Hassan N., Gitzendanner M. A., Bruenn R. A., Croley M., Vandeventer A., Horn J. W., Dhingra A., Brockington S. F., Latvis M., Ramdial J., Alexandre R., Piedrahita A., Xi Z., Davis C. C., Soltis P. S., Soltis D. E., Phylogenetic analysis of the plastid inverted repeat for 244 species: Insights into deeper-level angiosperm relationships from a long, slowly evolving sequence region. Int. J. Plant Sci. 172, 541–558 (2011).
13
Burleigh J. G., Bansal M. S., Eulenstein O., Hartmann S., Wehe A., Vision T. J., Genome-scale phylogenetics: Inferring the plant tree of life from 18,896 gene trees. Syst. Biol. 60, 117–125 (2011).
14
Lee E. K., Cibrian-Jaramillo A., Kolokotronis S. O., Katari M. S., Stamatakis A., Ott M., Chiu J. C., Little D. P., Stevenson D. W., McCombie W. R., Martienssen R. A., Coruzzi G., Desalle R., A functional phylogenomic view of the seed plants. PLoS Genet. 7, e1002411 (2011).
15
Soltis D. E., Smith S. A., Cellinese N., Wurdack K. J., Tank D. C., Brockington S. F., Refulio-Rodriguez N. F., Walker J. B., Moore M. J., Carlsward B. S., Bell C. D., Latvis M., Crawley S., Black C., Diouf D., Xi Z., Rushworth C. A., Gitzendanner M. A., Sytsma K. J., Qiu Y. L., Hilu K. W., Davis C. C., Sanderson M. J., Beaman R. S., Olmstead R. G., Judd W. S., Donoghue M. J., Soltis P. S., Angiosperm phylogeny: 17 genes, 640 taxa. Am. J. Bot. 98, 704–730 (2011).
16
While Amborella and water lilies (Nymphaeales) together have been reported to form the sister group to other angiosperms in some analyses (8789), this topology does not impact any of the inferences made in this paper.
17
Supplementary materials for this article are available on Science Online.
18
Chamala S., Chanderbali A. S., Der J. P., Lan T., Walts B., Albert V. A., dePamphilis C. W., Leebens-Mack J., Rounsley S., Schuster S., Wing R. A., Xiao N., Moore R., Soltis P. S., Soltis D. E., Barbazuk W. B., Assembly and validation of the genome of the nonmodel basal angiosperm Amborella. Science 342, 1516–1517 (2013).
19
Leitch I. J., Hanson L., DNA C-values in seven families fill phylogenetic gaps in the basal angiosperms. Bot. J. Linn. Soc. 140, 175–179 (2002).
20
Zuccolo A., Bowers J. E., Estill J. C., Xiong Z., Luo M., Sebastian A., Goicoechea J. L., Collura K., Yu Y., Jiao Y., Duarte J., Tang H., Ayyampalayam S., Rounsley S., Kudrna D., Paterson A. H., Pires J. C., Chanderbali A., Soltis D. E., Chamala S., Barbazuk B., Soltis P. S., Albert V. A., Ma H., Mandoli D., Banks J., Carlson J. E., Tomkins J., dePamphilis C. W., Wing R. A., Leebens-Mack J., A physical map for the Amborella trichopoda genome sheds light on the evolution of angiosperm genome structure. Genome Biol. 12, R48 (2011).
21
Estill J. C., Bennetzen J. L., The DAWGPAWS pipeline for the annotation of genes and transposable elements in plant genomes. Plant Methods 5, 8 (2009).
22
Haas B. J., Salzberg S. L., Zhu W., Pertea M., Allen J. E., Orvis J., White O., Buell C. R., Wortman J. R., Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9, R7 (2008).
23
Takuno S., Gaut B. S., Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl. Acad. Sci. U.S.A. 110, 1797–1802 (2013).
24
Law J. A., Jacobsen S. E., Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).
25
Zemach A., McDaniel I. E., Silva P., Zilberman D., Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).
26
Jiao Y., Leebens-Mack J., Ayyampalayam S., Bowers J. E., McKain M. R., McNeal J., Rolf M., Ruzicka D. R., Wafula E., Wickett N. J., Wu X., Zhang Y., Wang J., Zhang Y., Carpenter E. J., Deyholos M. K., Kutchan T. M., Chanderbali A. S., Soltis P. S., Stevenson D. W., McCombie R., Pires J. C., Wong G. K., Soltis D. E., Depamphilis C. W., A genome triplication associated with early diversification of the core eudicots. Genome Biol. 13, R3 (2012).
27
Jaillon O., Aury J. M., Noel B., Policriti A., Clepet C., Casagrande A., Choisne N., Aubourg S., Vitulo N., Jubin C., Vezzi A., Legeai F., Hugueney P., Dasilva C., Horner D., Mica E., Jublot D., Poulain J., Bruyère C., Billault A., Segurens B., Gouyvenoux M., Ugarte E., Cattonaro F., Anthouard V., Vico V., Del Fabbro C., Alaux M., Di Gaspero G., Dumas V., Felice N., Paillard S., Juman I., Moroldo M., Scalabrin S., Canaguier A., Le Clainche I., Malacrida G., Durand E., Pesole G., Laucou V., Chatelet P., Merdinoglu D., Delledonne M., Pezzotti M., Lecharny A., Scarpelli C., Artiguenave F., Pè M. E., Valle G., Morgante M., Caboche M., Adam-Blondon A. F., Weissenbach J., Quétier F., Wincker P., French-Italian Public Consortium for Grapevine Genome Characterization, The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007).
28
Argout X., Salse J., Aury J. M., Guiltinan M. J., Droc G., Gouzy J., Allegre M., Chaparro C., Legavre T., Maximova S. N., Abrouk M., Murat F., Fouet O., Poulain J., Ruiz M., Roguet Y., Rodier-Goud M., Barbosa-Neto J. F., Sabot F., Kudrna D., Ammiraju J. S., Schuster S. C., Carlson J. E., Sallet E., Schiex T., Dievart A., Kramer M., Gelley L., Shi Z., Bérard A., Viot C., Boccara M., Risterucci A. M., Guignon V., Sabau X., Axtell M. J., Ma Z., Zhang Y., Brown S., Bourge M., Golser W., Song X., Clement D., Rivallan R., Tahi M., Akaza J. M., Pitollat B., Gramacho K., D A., Hont, Brunel D., Infante D., Kebe I., Costet P., Wing R., McCombie W. R., Guiderdoni E., Quetier F., Panaud O., Wincker P., Bocs S., Lanaud C., The genome of Theobroma cacao. Nat. Genet. 43, 101–108 (2011).
29
Lyons E., Pedersen B., Kane J., Alam M., Ming R., Tang H., Wang X., Bowers J., Paterson A., Lisch D., Freeling M., Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol. 148, 1772–1781 (2008).
30
International Peach Genome InitiativeVerde I., Abbott A. G., Scalabrin S., Jung S., Shu S., Marroni F., Zhebentyayeva T., Dettori M. T., Grimwood J., Cattonaro F., Zuccolo A., Rossini L., Jenkins J., Vendramin E., Meisel L. A., Decroocq V., Sosinski B., Prochnik S., Mitros T., Policriti A., Cipriani G., Dondini L., Ficklin S., Goodstein D. M., Xuan P., Del Fabbro C., Aramini V., Copetti D., Gonzalez S., Horner D. S., Falchi R., Lucas S., Mica E., Maldonado J., Lazzari B., Bielenberg D., Pirona R., Miculan M., Barakat A., Testolin R., Stella A., Tartarini S., Tonutti P., Arús P., Orellana A., Wells C., Main D., Vizzotto G., Silva H., Salamini F., Schmutz J., Morgante M., Rokhsar D. S., The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45, 487–494 (2013).
31
C. Zheng, K. Swenson, E. Lyons, D. Sankoff, in Algorithms in Bioinformatics (Springer, Berlin, 2011), pp. 364–375.
32
Galil Z., Efficient algorithms for finding maximum matching in graphs. ACM Comput. Surv. 18, 23–38 (1986).
33
Jung S., Cestaro A., Troggio M., Main D., Zheng P., Cho I., Folta K. M., Sosinski B., Abbott A., Celton J. M., Arús P., Shulaev V., Verde I., Morgante M., Rokhsar D., Velasco R., Sargent D. J., Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 13, 129 (2012).
34
Soltis D. E., Albert V. A., Leebens-Mack J., Bell C. D., Paterson A. H., Zheng C., Sankoff D., Depamphilis C. W., Wall P. K., Soltis P. S., Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–348 (2009).
35
Van de Peer Y., A mystery unveiled. Genome Biol. 12, 113 (2011).
36
Proost S., Pattyn P., Gerats T., Van de Peer Y., Journey through the past: 150 million years of plant genome evolution. Plant J. 66, 58–65 (2011).
37
Cui L., Wall P. K., Leebens-Mack J. H., Lindsay B. G., Soltis D. E., Doyle J. J., Soltis P. S., Carlson J. E., Arumuganathan K., Barakat A., Albert V. A., Ma H., dePamphilis C. W., Widespread genome duplications throughout the history of flowering plants. Genome Res. 16, 738–749 (2006).
38
Nystedt B., Street N. R., Wetterbom A., Zuccolo A., Lin Y. C., Scofield D. G., Vezzi F., Delhomme N., Giacomello S., Alexeyenko A., Vicedomini R., Sahlin K., Sherwood E., Elfstrand M., Gramzow L., Holmberg K., Hällman J., Keech O., Klasson L., Koriabine M., Kucukoglu M., Käller M., Luthman J., Lysholm F., Niittylä T., Olson A., Rilakovic N., Ritland C., Rosselló J. A., Sena J., Svensson T., Talavera-López C., Theißen G., Tuominen H., Vanneste K., Wu Z. Q., Zhang B., Zerbe P., Arvestad L., Bhalerao R., Bohlmann J., Bousquet J., Garcia Gil R., Hvidsten T. R., de Jong P., MacKay J., Morgante M., Ritland K., Sundberg B., Thompson S. L., Van de Peer Y., Andersson B., Nilsson O., Ingvarsson P. K., Lundeberg J., Jansson S., The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).
39
Wellmer F., Riechmann J. L., Alves-Ferreira M., Meyerowitz E. M., Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16, 1314–1326 (2004).
40
Skinner D. J., Gasser C. S., Expression-based discovery of candidate ovule development regulators through transcriptional profiling of ovule mutants. BMC Plant Biol. 9, 29 (2009).
41
Wuest S. E., O D. S., Maoileidigh, Rae L., Kwasniewska K., Raganelli A., Hanczaryk K., Lohan A. J., Loftus B., Graciet E., Wellmer F., Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc. Natl. Acad. Sci. U.S.A. 109, 13452–13457 (2012).
42
Chanderbali A. S., Yoo M. J., Zahn L. M., Brockington S. F., Wall P. K., Gitzendanner M. A., Albert V. A., Leebens-Mack J., Altman N. S., Ma H., dePamphilis C. W., Soltis D. E., Soltis P. S., Conservation and canalization of gene expression during angiosperm diversification accompany the origin and evolution of the flower. Proc. Natl. Acad. Sci. U.S.A. 107, 22570–22575 (2010).
43
Ehrlich P. R., Raven P. H., Butterflies and plants—A study in coevolution. Evolution 18, 586–608 (1964).
44
Futuyma D. J., Agrawal A. A., Macroevolution and the biological diversity of plants and herbivores. Proc. Natl. Acad. Sci. U.S.A. 106, 18054–18061 (2009).
45
Arora R., Agarwal P., Ray S., Singh A. K., Singh V. P., Tyagi A. K., Kapoor S., MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8, 242 (2007).
46
Díaz-Riquelme J., Lijavetzky D., Martínez-Zapater J. M., Carmona M. J., Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol. 149, 354–369 (2009).
47
Leseberg C. H., Li A., Kang H., Duvall M., Mao L., Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378, 84–94 (2006).
48
De Bodt S., Raes J., Van de Peer Y., Theissen G., And then there were many: MADS goes genomic. Trends Plant Sci. 8, 475–483 (2003).
49
Hernández-Hernández T., Martínez-Castilla L. P., Alvarez-Buylla E. R., Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein–protein interaction domains after major gene duplication events. Mol. Biol. Evol. 24, 465–481 (2007).
50
Liu C., Zhang J., Zhang N., Shan H., Su K., Zhang J., Meng Z., Kong H., Chen Z., Interactions among proteins of floral MADS-box genes in basal eudicots: Implications for evolution of the regulatory network for flower development. Mol. Biol. Evol. 27, 1598–1611 (2010).
51
Saidi Y., Hearn T. J., Coates J. C., Function and evolution of “green” GSK3/Shaggy-like kinases. Trends Plant Sci. 17, 39–46 (2012).
52
Qi X., Chanderbali A. S., Wong G. K. S., Soltis D. E., Soltis P. S., Phylogeny and evolutionary history of glycogen synthase kinase 3/SHAGGY-like kinase genes in land plants. BMC Evol. Biol. 13, 143 (2013).
53
Dunwell J. M., Purvis A., Khuri S., Cupins: The most functionally diverse protein superfamily? Phytochemistry 65, 7–17 (2004).
54
Häger K. P., Müller B., Wind C., Erbach S., Fischer H., Evolution of legumin genes: Loss of an ancestral intron at the beginning of angiosperm diversification. FEBS Lett. 387, 94–98 (1996).
55
Adachi M., Kanamori J., Masuda T., Yagasaki K., Kitamura K., Mikami B., Utsumi S., Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer. Proc. Natl. Acad. Sci. U.S.A. 100, 7395–7400 (2003).
56
Li C., Li M., Dunwell J. M., Zhang Y. M., Gene duplication and an accelerated evolutionary rate in 11S globulin genes are associated with higher protein synthesis in dicots as compared to monocots. BMC Evol. Biol. 12, 15 (2012).
57
Tandang-Silvas M. R., Fukuda T., Fukuda C., Prak K., Cabanos C., Kimura A., Itoh T., Mikami B., Utsumi S., Maruyama N., Conservation and divergence on plant seed 11S globulins based on crystal structures. Biochim. Biophys. Acta 1804, 1432–1442 (2010).
58
Gershenzon J., Dudareva N., The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414 (2007).
59
Chen F., Tholl D., Bohlmann J., Pichersky E., The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66, 212–229 (2011).
60
Thien L. B., Sage T. L., Jaffré T., Bernhardt P., Pontieri V., Weston P. H., Malloch D., Azuma H., Graham S. W., McPherson M. A., Rai H. S., Sage R. F., Dupre J. L., The population structure and floral biology of Amborella trichopoda (Amborellaceae). Ann. Missouri Bot. Gard. 90, 466–490 (2003).
61
P. Albersheim, A. Darvill, K. Roberts, R. Sederoff, A. Staehelin, Plant Cell Walls (Garland Science, New York, 2011).
62
K. V. Sarkanen, C. H. Ludwig, Lignins—Occurrence, Formation, Structure and Reactions (John Wiley & Sons, New York, 1971).
63
Weng J. K., Li X., Stout J., Chapple C., Independent origins of syringyl lignin in vascular plants. Proc. Natl. Acad. Sci. U.S.A. 105, 7887–7892 (2008).
64
Donaldson L. A., Lignification and lignin topochemistry—An ultrastructural view. Phytochemistry 57, 859–873 (2001).
65
Feild T. S., Zwieniecki M. A., Brodribb T. J., Jaffre T., Donoghue M. J., Holbrook N. M., Structure and function of tracheary elements in Amborella trichopoda. Int. J. Plant Sci. 161, 705–712 (2000).
66
Timell T. E., Wood hemicelluloses: Part II. Adv. Carbohydr. Chem. 20, 409–483 (1965).
67
Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B., The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).
68
Baucom R. S., Estill J. C., Chaparro C., Upshaw N., Jogi A., Deragon J. M., Westerman R. P., Sanmiguel P. J., Bennetzen J. L., Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 5, e1000732 (2009).
69
Wicker T., Keller B., Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res. 17, 1072–1081 (2007).
70
Tomato Genome Consortium, The tomato genome sequence provides insights into fleshy fruit evolution, Nature 485, 635–641 (2012).
71
Wicker T., Sabot F., Hua-Van A., Bennetzen J. L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A. H., A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).
72
Zhai J., Jeong D. H., De Paoli E., Park S., Rosen B. D., Li Y., González A. J., Yan Z., Kitto S. L., Grusak M. A., Jackson S. A., Stacey G., Cook D. R., Green P. J., Sherrier D. J., Meyers B. C., MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev. 25, 2540–2553 (2011).
73
Li F., Pignatta D., Bendix C., Brunkard J. O., Cohn M. M., Tung J., Sun H., Kumar P., Baker B., MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. U.S.A. 109, 1790–1795 (2012).
74
Shivaprasad P. V., Chen H. M., Patel K., Bond D. M., Santos B. A., Baulcombe D. C., A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874 (2012).
75
Eckert A. J., Liechty J. D., Tearse B. R., Pande B., Neale D. B., DnaSAM: Software to perform neutrality testing for large datasets with complex null models. Mol. Ecol. Resour. 10, 542–545 (2010).
76
Li H., Durbin R., Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).
77
Ibarra-Laclette E., Lyons E., Hernández-Guzmán G., Pérez-Torres C. A., Carretero-Paulet L., Chang T. H., Lan T., Welch A. J., Juárez M. J., Simpson J., Fernández-Cortés A., Arteaga-Vázquez M., Góngora-Castillo E., Acevedo-Hernández G., Schuster S. C., Himmelbauer H., Minoche A. E., Xu S., Lynch M., Oropeza-Aburto A., Cervantes-Pérez S. A., de Jesús Ortega-Estrada M., Cervantes-Luevano J. I., Michael T. P., Mockler T., Bryant D., Herrera-Estrella A., Albert V. A., Herrera-Estrella L., Architecture and evolution of a minute plant genome. Nature 498, 94–98 (2013).
78
Poncet V., Munoz F., Munzinger J., Pillon Y., Gomez C., Couderc M., Tranchant-Dubreuil C., Hamon S., de Kochko A., Phylogeography and niche modelling of the relict plant Amborella trichopoda (Amborellaceae) reveal multiple Pleistocene refugia in New Caledonia. Mol. Ecol. (2013).
79
Haas B. J., Delcher A. L., Mount S. M., Wortman J. R., Smith R. K., Hannick L. I., Maiti R., Ronning C. M., Rusch D. B., Town C. D., Salzberg S. L., White O., Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
80
Kato A., Lamb J. C., Albert P. S., Danilova T., Han F., Gao Z., Findley S., Birchler J. A., Chromosome painting for plant biotechnology. Methods Mol. Biol. 701, 67–96 (2011).
81
Li L., Stoeckert C. J., Roos D. S., OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).
82
Ming R., Vanburen R., Liu Y., Yang M., Han Y., Li L. T., Zhang Q., Kim M. J., Schatz M. C., Campbell M., Li J., Bowers J. E., Tang H., Lyons E., Ferguson A. A., Narzisi G., Nelson D. R., Blaby-Haas C. E., Gschwend A. R., Jiao Y., Der J. P., Zeng F., Han J., Min X. J., Hudson K. A., Singh R., Grennan A. K., Karpowicz S. J., Watling J. R., Ito K., Robinson S. A., Hudson M. E., Yu Q., Mockler T. C., Carroll A., Zheng Y., Sunkar R., Jia R., Chen N., Arro J., Wai C. M., Wafula E., Spence A., Han Y., Xu L., Zhang J., Peery R., Haus M. J., Xiong W., Walsh J. A., Wu J., Wang M. L., Zhu Y. J., Paull R. E., Britt A. B., Du C., Downie S. R., Schuler M. A., Michael T. P., Long S. P., Ort D. R., William Schopf J., Gang D. R., Jiang N., Yandell M., Depamphilis C. W., Merchant S. S., Paterson A. H., Buchanan B. B., Li S., Shen-Miller J., Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol. 14, R41 (2013).
83
M. S. Barker, in Plant Genome Diversity, J. Greilhuber, J. Dolezel, J. F. Wendel, Eds. (Springer, Vienna, 2013), vol. 2, pp. 245–253.
84
Barker M. S., Kane N. C., Matvienko M., Kozik A., Michelmore R. W., Knapp S. J., Rieseberg L. H., Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol. Biol. Evol. 25, 2445–2455 (2008).
85
Gerats T., Vandenbussche M., A model system for comparative research: Petunia. Trends Plant Sci. 10, 251–256 (2005).
86
Lamb R. S., Irish V. F., Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc. Natl. Acad. Sci. U.S.A. 100, 6558–6563 (2003).
87
Qiu Y. L., Li L., Wang B., Xue J. Y., Hendry T. A., Li R. Q., Brown J. W., Liu Y., Hudson G. T., Chen Z. D., Angiosperm phylogeny inferred from sequences of four mitochondrial genes. J. Syst. Evol. 48, 391–425 (2010).
88
Goremykin V. V., Nikiforova S. V., Biggs P. J., Zhong B., Delange P., Martin W., Woetzel S., Atherton R. A., McLenachan P. A., Lockhart P. J., The evolutionary root of flowering plants. Syst. Biol. 62, 50–61 (2013).
89
Finet C., Timme R. E., Delwiche C. F., Marlétaz F., Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr. Biol. 20, 2217–2222 (2010).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 342 | Issue 6165
20 December 2013

Submission history

Published in print: 20 December 2013

Permissions

Request permissions for this article.

Acknowledgments

Sequencing reads, reference genome assembly, and gene annotations of Amborella trichopoda are available from NCBI (BioProject PRJNA212863). The Amborella genome is also available in CoGe (http://genomevolution.org/CoGe/) and at the Amborella Genome Database (http://www.amborella.org), where additional tools for comparative genomic analysis are available. This work was funded by the NSF Plant Genome Research Program (grant 0922742) to C.W.D., H.M., W.B.B., P.S.S., D.E.S., V.A.A., J.L.-M., S.R.W., J.D.P., and S.R., with additional funding from NSF’s iPlant Collaborative to P.S.S. and D.E.S. Author contributions are included in the Supplementary Materials.

Authors

Affiliations

W. Bradley Barbazuk
Claude W. dePamphilis
Stephan C. Schuster
Jetty S. S. Ammiraju
W. Bradley Barbazuk
Andre S. Chanderbali
Claude W. dePamphilis
Stephan C. Schuster
W. Bradley Barbazuk
Andre S. Chanderbali
Saravanaraj Ayyampalayam
W. Bradley Barbazuk
James M. Burnette, III
Claude W. dePamphilis
Lorenzo Carretero-Paulet
Claude W. dePamphilis
W. Bradley Barbazuk
Lorenzo Carretero-Paulet
Claude W. dePamphilis
Andre S. Chanderbali
Claude W. dePamphilis
Valérie Burtet-Sarramegna
Matthieu Villegente
W. Bradley Barbazuk
Alexandre de Kochko
Claude W. dePamphilis
Luis R. Herrera-Estrella
Enrique Ibarra-Laclette
Stephan C. Schuster

Notes

All authors with their affiliations and contributions appear at the end of this paper.
*
Address for general correspondence: [email protected]. Contact information for working groups is provided in the authorship details.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Genome-Wide Characterization and Expression Profiling of ABA Biosynthesis Genes in a Desert Moss Syntrichia caninervis, Plants, 12, 5, (1114), (2023).https://doi.org/10.3390/plants12051114
    Crossref
  2. Genome-Wide Analysis and Expression of Cyclic Nucleotide–Gated Ion Channel (CNGC) Family Genes under Cold Stress in Mango (Mangifera indica), Plants, 12, 3, (592), (2023).https://doi.org/10.3390/plants12030592
    Crossref
  3. Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics, International Journal of Molecular Sciences, 24, 6, (5608), (2023).https://doi.org/10.3390/ijms24065608
    Crossref
  4. Genome-Wide Re-Identification and Analysis of CrRLK1Ls in Tomato, International Journal of Molecular Sciences, 24, 4, (3142), (2023).https://doi.org/10.3390/ijms24043142
    Crossref
  5. Unique gene duplications and conserved microsynteny potentially associated with resistance to wood decay in the Lauraceae, Frontiers in Plant Science, 14, (2023).https://doi.org/10.3389/fpls.2023.1122549
    Crossref
  6. Genome-wide analysis of bromodomain gene family in Arabidopsis and rice, Frontiers in Plant Science, 14, (2023).https://doi.org/10.3389/fpls.2023.1120012
    Crossref
  7. PlantTribes2: Tools for comparative gene family analysis in plant genomics, Frontiers in Plant Science, 13, (2023).https://doi.org/10.3389/fpls.2022.1011199
    Crossref
  8. Molecular mechanism of Rubisco activase: Dynamic assembly and Rubisco remodeling, Frontiers in Molecular Biosciences, 10, (2023).https://doi.org/10.3389/fmolb.2023.1125922
    Crossref
  9. Life without a sporophyte: the origin and genomic consequences of asexual reproduction in a gametophyte-only fern, International Journal of Plant Sciences, (2023).https://doi.org/10.1086/724824
    Crossref
  10. Abduction as Phylogenetic Inference: Epistemological Perspectives in Scientific Practices, Handbook of Abductive Cognition, (1651-1679), (2023).https://doi.org/10.1007/978-3-031-10135-9_56
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media