Advertisement

Abstract

Small nucleolar RNAs (snoRNAs) are required for ribose 2′-O-methylation of eukaryotic ribosomal RNA. Many of the genes for this snoRNA family have remained unidentified in Saccharomyces cerevisiae, despite the availability of a complete genome sequence. Probabilistic modeling methods akin to those used in speech recognition and computational linguistics were used to computationally screen the yeast genome and identify 22 methylation guide snoRNAs, snR50 to snR71. Gene disruptions and other experimental characterization confirmed their methylation guide function. In total, 51 of the 55 ribose methylated sites in yeast ribosomal RNA were assigned to 41 different guide snoRNAs.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Goffeau A., et al., Science 274, 546 (1996).
2
Lowe T. M., Eddy S. R., Nucleic Acids Res. 25, 955 (1997).
3
Balakin A. G., Smith L., Fournier M. J., Cell 86, 823 (1996);
Tollervey D., Kiss T., Curr. Opin. Cell Biol. 9, 337 (1997);
Bachellerie J.-P., Cavaille J., Trends Biochem. Sci. 22, 257 (1997);
Smith C. M., Steitz J. A., Cell 89, 669 (1997).
4
A. A. Hadjiolov, in Cell Biology Monographs, M. Alfert et al., Eds. (Springer-Verlag, Vienna, 1985), pp. 1–268;
Woolford J. L., Adv. Genet. 29, 63 (1991).
5
Ni J., Tien A. L., Fournier M. J., Cell 89, 565 (1997);
; P. Gannot, M.-L. Bortolin, T. Kiss, ibid., p. 799.
6
Kiss-Laszlo Z., Henry Y., Bachellerie J.-P., Caizergues-Ferrer M., Kiss T., ibid. 85, 1077 (1996).
7
Nicoloso M., Qu L.-H., Michot B., Bachellerie J.-P., J. Mol. Biol. 260, 178 (1996).
8
Jarmolowski A., Zagorski J., Li H. V., Fournier M. J., EMBO J. 9, 4503 (1990);
Watkins N. J., Newman D. R., Kuhn J. F., Maxwell E. S., RNA 4, 582 (1998);
Lang T. S., Borovjagin A., Maxwell E. S., Gerbi S. A., EMBO J. 17, 3176 (1998);
; D. A. Samarsky, M. J. Fournier, R. H. Singer, E. Bertrand, ibid., p. 3747.
9
Cavaille J., Nicoloso M., Bachellerie J.-P., Nature 383, 732 (1996).
10
Maden B. E. H., Prog. Nucleic Acids Res. Mol. Biol. 39, 241 (1990).
11
Singh H., Lane B. G., Can. J. Biochem. 42, 1011 (1964).
12
Klootwijk J., Planta R. J., Eur. J. Biochem. 39, 325 (1973).
13
Raue H. A., Klootwijk J., Musters W., Prog. Biophys. Mol. Biol. 51, 77 (1988).
14
Veldman G. M., Klootwijk J., de Regt V. C. H. F., Planta R. J., Nucleic Acids Res. 9, 6935 (1981).
15
Cavaille J., Bachellerie J.-P., ibid. 26, 1576 (1998).
16
Nicoloso M., Caizergues-Ferrer M., Michot B., Azum M. C., Bachellerie J.-P., Mol. Cell. Biol. 14, 5766 (1994).
17
R. Durbin, S. R. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Cambridge Univ. Press, Cambridge, 1998).
18
Eddy S. R., Curr. Opin. Struct. Biol. 6, 361 (1996).
19
___, Durbin R., Nucleic Acids Res. 22, 2079 (1994);
; Y. Sakakibara et al., ibid., p. 5112.
20
Barrett C., Hughey R., Karplus K., Comput. Appl. Biosci. 13, 191 (1997).
21
Random sequences were generated by a fifth-order Markov chain based on 6-mer frequencies within the yeast genome.
22
snoRNA disruptions were generated by homologous gene replacement in S. cerevisiae haploid strain yM4585 (Mat a his3Δ200 lys2-801 leu2-3,2-112 trp1-901 tyr1-501 URA3+ ADE2+ CANS) and diploid strain yM4587 (Mat a/Mat α his3Δ200/his3Δ200 lys2-801/ lys2-801 leu2-3,2-112/ leu2-3,2-112 trp1-901/ trp1-901 tyr1-501/ tyr1-501 URA3+/ URA3+ ADE2+/ ADE2+ CANS/ canr). A polymerase chain reaction (PCR)–based HIS3 insertion scheme was used as described by A. Baudin, O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin [Nucleic Acids Res. 21, 3329 (1993)], with a protocol provided by L. Riles. Transformants growing on yeast extract, peptone, and dextrose His plates were picked and assayed by PCR for correct integration of the HIS3 marker gene replacing the target snoRNA.
23
Mapping of rRNA 2′-O-methyl sites was based on previously described methods from B. E. H. Maden, M. E. Corbett, P. A. Heeney, K. Pugh, and P. M. Ajuh [Biochemie 77, 22 (1995)] and (6). The sequences of all mapping primers are available on the World Wide Web (WWW) (28). Total yeast RNA (0.4 μg/μl) was annealed with end-labeled mapping primers (0.15 pmol/μl) at 60°C for 4 min. Primer extensions were carried out in 5-μl reactions containing 0.8 μg of RNA and 0.3 of pmol 32P–end-labeled primer in the presence of 50 mM tris-Cl (pH 8.6), 60 mM NaCl, 9 mM MgCl2, 10 mM dithiothreitol, 1 mM concentrations of each dNTP, and avian myeloblastosis virus reverse transcriptase (0.2 U/μl) for 30 min at 37°C. Low dNTP concentration reactions were carried out in the same manner except with 0.004 mM concentrations of each dNTP and 5 mM MgCl2. Each reaction was analyzed by electrophoresis next to an RNA sequencing ladder on an 8% polyacrylamide gel.
24
T. M. Lowe and S. R. Eddy, data not shown. Primer extension gels are available on the WWW (28).
25
J. Ni, A. Balakin, M. J. Fournier, personal communication.
26
Petfalski E., et al., Mol. Cell. Biol. 18, 1181 (1998);
Chanfreau G., Rotondo G., Legrain P., Jacquier A., EMBO J. 17, 3726 (1998);
Chanfreau G., Legrain P., Jacquier A., J. Mol. Biol. 284, 975 (1998);
Qu L. H., et al., Mol. Cell. Biol. 19, 1144 (1999) .
27
Leader D. J., et al., EMBO J. 16, 5742 (1997);
Shaw P. J., Beven A. F., Leader D. J., Brown J. W., J. Cell Sci. 111, 2121 (1998).
28
All computer codes, snoRNA search results, primer sequences, gel images, and other referenced data can be accessed on the WWW at rna.wustl.edu/snoRNAdb/
29
Kiss-Laszlo Z., Henry Y., Kiss T., EMBO J. 17, 797 (1998).
30
The S. cerevisiae database is available at: genome-www.stanford.edu/Saccharomyces/
31
We thank L. Lutfiyya and L. Riles from the M. Johnston lab for protocols and guidance in all aspects of yeast handling, gene disruptions, and colony PCR and RNA preparations; M. Fournier, J. Ni, D. Samarsky, and B. E. H. Maden for helpful discussions and sharing of unpublished observations; S. Johnson and L. Lutfiyya for careful reading of the manuscript; and M. Johnston for providing the haploid strain yM4585 and diploid strain yM4587. Supported by NIH grant R01-HG01363 and by a gift from Eli Lilly.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 283 | Issue 5405
19 February 1999

Submission history

Received: 27 May 1998
Accepted: 19 January 1999
Published in print: 19 February 1999

Permissions

Request permissions for this article.

Authors

Affiliations

Todd M. Lowe
Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA. E-mail: [email protected] (T.M.L.) and [email protected](S.R.E.)
Sean R. Eddy
Department of Genetics, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA. E-mail: [email protected] (T.M.L.) and [email protected](S.R.E.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Homologs of Small Nucleolar RNAs in Archaea, Science, 288, 5465, (517-522), (2021)./doi/10.1126/science.288.5465.517
    Abstract
  2. Evolution of Yeast Noncoding RNAs Reveals an Alternative Mechanism for Widespread Intron Loss, Science, 330, 6005, (838-841), (2021)./doi/10.1126/science.1194554
    Abstract
  3. An Expanding Universe of Noncoding RNAs, Science, 296, 5571, (1260-1263), (2002)./doi/10.1126/science.1072249
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media