Advertisement
No access
Special Reviews

Early Animal Evolution: Emerging Views from Comparative Biology and Geology

Science
25 Jun 1999
Vol 284, Issue 5423
pp. 2129-2137

Abstract

The Cambrian appearance of fossils representing diverse phyla has long inspired hypotheses about possible genetic or environmental catalysts of early animal evolution. Only recently, however, have data begun to emerge that can resolve the sequence of genetic and morphological innovations, environmental events, and ecological interactions that collectively shaped Cambrian evolution. Assembly of the modern genetic tool kit for development and the initial divergence of major animal clades occurred during the Proterozoic Eon. Crown group morphologies diversified in the Cambrian through changes in the genetic regulatory networks that organize animal ontogeny. Cambrian radiation may have been triggered by environmental perturbation near the Proterozoic-Cambrian boundary and subsequently amplified by ecological interactions within reorganized ecosystems.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Bowring S. A., et al., Science 261, 1293 (1993).
2
Kaufman A. J., Knoll A. H., Semikhatov M. A., Grotzinger J. P., Jacobsen S. B., Geol. Mag. 133, 509 (1996).
3
Missarzhevsky V. V., Tr. Geol. Inst. Akad. Nauk SSSR 443, 1 (1989);
Khomentovsky V. V., Karlova G. A., Geol. Mag. 130, 29 (1993).
4
C. Darwin, The Origin of Species (J. Murray, London, 1859).
5
Bronham L., Rambaut A., Fortey R., Cooper A., Penny D., Proc. Natl. Acad. Sci. U.S.A. 95, 12386 (1998).
6
P. W. Signor and J. H. Lipps, in Origin and Early Evolution of the Metazoa, J. H. Lipps and P. W. Signor, Eds. (Plenum, New York, 1992), pp. 1–23.
7
M. F. Glaessner, The Dawn of Animal Life: A Biohistorical Study (Cambridge Univ. Press, Cambridge, 1984); G. M. Narbonne, GSA Today8 (no. 2), 1 (1998).
8
Hofmann H. J., Narbonne G. M., Aitken J. D., Geology 18, 1199 (1990).
9
Narbonne G. M., Kaufman A. J., Knoll A. H., Geol. Soc. Am. Bull. 106, 1281 (1994).
10
Seilacher A., Bose P. K., Pflüger F., Science 282, 80 (1998);
Braisier M. D., McIlroy D., J. Geol. Soc. London 155, 5 (1998).
11
Runnegar B., Neues Jahrb. Geol. Palaeontol. Abh. 195, 303 (1995).
12
Seilacher A., Lethaia 22, 229 (1989);
; J. Geol. Soc. London 149, 607 (1992).
13
In phylogenetic parlance, a crown group is defined as the last common ancestor of all living members of a clade plus all its descendants; stem taxa are extinct forms that diverge below the crown. Recognition of crowns and stems facilitates paleontological interpretation, because early members of clades commonly lack some of the characters that collectively characterize living representatives. For example, a stem arthropod might display molting, segmentation, and a chitinous exoskeleton, but not jointed appendages.
14
Gehling J. G., Geol. Soc. India Mem. 20, 181 (1991);
; M. A. Fedonkin, in (6), p. 87; R. J. F. Jenkins, in ibid., pp. 131–176.
15
Fedonkin M. A., Waggoner B. M., Nature 388, 868 (1997).
16
M. A. Fedonkin and B. Runnegar, in The Proterozoic Biosphere: An Interdisciplinary Study, J. W. Schopf and C. Klein, Eds. (Cambridge Univ. Press, Cambridge, 1992), pp. 389–396.
17
Jensen S., Gehling J. G., Droser M. L., Nature 393, 567 (1998).
18
S. Conway Morris, The Crucible of Creation: The Burgess Shale and the Rise of Animals (Oxford Univ. Press, Oxford, 1998).
19
T. P. Crimes, in (6), pp. 177–202;
Jensen S., Fossils Strata 42, 1 (1997) .
20
Chen J., Zhou G., Bull. Natl. Mus. Nat. Sci. 10, 1 (1997).
21
Chen J., Xiao Z., Yuan X., Acta Palaeontol. Sin. 33, 391 (1994);
Steiner M., Berliner Geowissenschaft. Abh. E 15, 1 (1994);
Xiao S., Knoll A. H., Yuan X., J. Paleontol. 76, 1072 (1998).
22
Germs G. J. B., Am. J. Sci. 272, 752 (1972);
Grant S. W. F., ibid. 290A, 261 (1990).
23
Grotzinger J. P., Bowring S. A., Saylor B. V., Kaufman A. J., Science 270, 598 (1995);
Grotzinger J. P., Watters W., Knoll A. H., Smith O., Geol. Soc. Am. Abstr. Programs 30, A147 (1998).
24
Zhang Y., Yin L., Xiao S., Knoll A. H., Paleontol. Soc. Mem. 50, 1 (1998);
Xiao S., Zhang Y., Knoll A. H., Nature 391, 553 (1998);
Li C., Chen J., Hua T., Science 279, 289 (1998).
25
Knoll A. H., Hayes J. M., Kaufman A. J., Swett K., Lambert I. B., Nature 321, 832 (1986);
Kaufman A. J., Knoll A. H., Narbonne G. M., Proc. Natl. Acad. Sci. U.S.A. 94, 6600 (1997).
26
Brasier M. D., et al., Geol. Mag. 131, 767 (1994);
Brasier M. D., Shields G., Kuleshov V. N., Zhegallo E. A., ibid. 133, 445 (1996);
; A. J. Kaufman, A. H. Knoll, M. A. Semikhatov, J. P. Grotzinger, S. B. Jacobsen, ibid., p. 509.
27
Moczydlowska M., Fossils Strata 29, 1 (1991);
Knoll A. H., Proc. Natl. Acad. Sci. U.S.A. 91, 16743 (1994).
28
Compston W., Williams J. L., Kirschvink J. L., Zhang Z., Ma G., J. Geol. Soc. London 127, 319 (1992);
Compston W., et al., ibid. 152, 599 (1995);
; S. A. Bowring and D. H. Erwin, GSA Today 8 (no. 9), 1 (1998);
Landing E., et al., Can. J. Earth Sci. 35, 329 (1998).
29
Sogin M. L., Silberman J. D., Int. J. Parasitol. 28, 11 (1998).
30
Knoll A. H., Science 256, 622 (1992).
31
McIlroy D., Logan G. A., Palaios 14, 58 (1999).
32
S. Bengtson, in (16), pp. 1017–1033.
33
Conway Morris S., Am. Zool. 38, 867 (1998).
34
Balavoine G., Adoutte A., Science 280, 397 (1998).
35
Valentine J. W., Jablonski D., Erwin D. H., Development 126, 851 (1999).
36
Maley L. E., Marshall C. R., Science 279, 505 (1998).
37
Philippe H., Laurent J., Curr. Opin. Genet. Dev. 8, 616 (1998).
38
Note that there are more than 10,000 possible rooted trees for just seven taxa and an astronomical 4.9 × 1047 possible trees for 35 phyla. Finding major subdivisions of the animal tree is thus a critical goal for limiting the possible phylogenies.
39
Aguinaldo A. A., et al., Nature 387, 489 (1997).
40
R. de Rosa et al., ibid., in press.
41
Adoutte A., Balavoine G., Lartillot N., de Rosa R., Trends Genet. 15, 104 (1999).
42
Ruiz-Trillo I., Riutort M., Littlewood D. T. J., Herniou E. A., Baguña J., Science 283, 1919 (1999).
43
Valentine J. W., Proc. Natl. Acad. Sci. U.S.A. 94, 8001 (1997).
44
C. Nielsen, Animal Evolution: Interrelationships of the Living Phyla (Oxford Univ. Press, Oxford, 1995).
45
Halanych K. M., et al., Science 267, 1641 (1995).
46
Cohen B. L., Stark S., Gawthrop A. B., Burke M. E., Thayer C. W., Proc. R. Soc. London Ser. B 265, 475 (1998).
47
De Robertis D. M., Sasai Y., Nature 380, 37 (1996).
48
Slack J. M. W., Holland P. W. H., Graham C. F., ibid. 361, 490 (1993).
49
S. Carroll, ibid. 376, 479 (1995).
50
Holland P. W. H., Am. Zool. 38, 829 (1998).
51
Panganiban G., et al., Proc. Natl. Acad. Sci. U.S.A. 94, 5162 (1997).
52
Shubin N., Tabin C., Carroll S. B., Nature 388, 639 (1997).
53
Quiring R., Walldorf U., Kloter U., Gehring W. J., Science 265, 785 (1994).
54
Halder G., Callaerts P., Gehring W. J., ibid. 267, 1788 (1995).
55
M. D'Alessio and
Frasch M., Mech. Dev. 58, 217 (1996).
56
Lassar A. B., et al., Cell 58, 823 (1989).
57
Michelson A. M., Abmayr M., Bate M., Martinez Arias A., Maniatis T., Genes Dev. 4, 2086 (1990).
58
Scott M. P., Cell 79, 1121 (1994).
59
Holland L. Z., Kene M., Williams N. A., Holland N. D., Development 124, 1723 (1997).
60
Ingham P. W., Howard K. R., Ish-Horowicz D., Nature 318, 439 (1985).
61
Müller M., von Weizsäcker E., Campos-Ortega J. A., Development 122, 2073 (1996).
62
Kimmel C. B., Trends Genet. 12, 329 (1996).
63
De Robertis E. M., Nature 387, 25 (1997).
64
Oliver G., Gruss P., Trends Neurosci. 20, 415 (1997).
65
Xu P.-X., Woo I., Her H., Beier D. R., Maas R. L., Development 124, 219 (1997).
66
Halder G., et al., ibid. 125, 2181 (1998).
67
Wray G., Levinton J., Shapiro L., Science 274, 568 (1996).
68
Ayala F. J., Rzhetsky A., Ayala F. J., Proc. Natl. Acad. Sci. U.S.A. 95, 606 (1998).
69
Martindale M. Q., Henry J. Q., Am. Zool. 38, 672 (1998).
70
Ax P., Q. Rev. Biol. 64, 1 (1989).
71
Eernisse D. J., Albert J. S., Anderson F. E., Syst. Biol. 41, 305 (1992).
72
Wainright P. O., Hinkle G., Sogin M. L., Stickel S. K., Science 260, 340 (1993).
73
J. R. Finnerty and M. Martindale, Evol. Dev., in press.
74
Finnerty J. R., Curr. Top. Dev. Biol. 40, 211 (1998).
75
Schierwater B., Kuhn K., Mol. Phylogenet. Evol. 9, 375 (1998).
76
Martinez D. E., Bridge D., Masuda-Nakagawa L. M., Cartwright P., Nature 393, 748 (1998).
77
Sun H., et al., Proc. Natl. Acad. Sci. U.S.A. 94, 5156 (1997).
78
Finnerty J. R., et al., Mol. Mar. Biol. Biotechnol. 5, 249 (1996).
79
Strathmann R. R., Annu. Rev. Ecol. Syst. 24, 89 (1993).
80
Davidson E., Peterson K., Cameron R., Science 270, 1319 (1995).
81
G. Haszprunar, L. v. Salvini-Plawin,
Rieger R. M., Acta Zool. 76, 141 (1995).
82
Nielsen C., Biol. Rev. 73, 125 (1998).
83
McHugh D., Rouse G. W., Trends Ecol. Evol. 13, 182 (1998).
84
Conway Morris S., Bioessays 20, 676 (1998).
85
___, Curr. Opin. Genet. Mol. Biol. 8, 662 (1998).
86
Arenas-Mena C., Martinez P., Cameron R. A., Davidson E. H., Proc. Natl. Acad. Sci. U.S.A. 95, 13062 (1998).
87
Wang B. B., et al., Cell 74, 29 (1993).
88
S. Irvine and M. Martindale, personal communication; K. Peterson, A. Cameron, E. Davidson, personal communication.
89
Briggs D., Fortey R., Science 246, 241 (1989).
90
Conway Morris S., Nature 361, 219 (1993).
91
Fortey R. A., Briggs D. E. G., Wills M. A., Biol. J. Linn. Soc. 57, 13 (1996).
92
Budd G., Lethaia 29, 1 (1996).
93
Weatherbee S. D., Carroll S. B., Cell 97, 283 (1999).
94
Damen W. G. M., Hausdorf M., Seyfarth E.-A., Tautz D., Proc. Natl. Acad. Sci. U.S.A. 95, 10665 (1998).
95
M. J. Telford and R. H. Thomas, ibid., p. 10671.
96
Averof M., Patel N., Nature 388, 682 (1997).
97
Averof M., Akam M., ibid. 376, 420 (1995).
98
Mouchel-Vielh E., Rigolot C., Gilbert J.-M., Deutsch J. S., Mol. Phylogenet. Evol. 9, 382 (1998).
99
Grenier J. K., Garber T. L., Warren R., Whitington P. M., Carroll S. B., Curr. Biol. 7, 547 (1997).
100
Warren R., Nagy L., Selegue J., Gates J., Carroll S., Nature 372, 458 (1994).
101
Weatherbee S. D., et al., Curr. Biol. 9, 109 (1999).
102
Burke A., Nelson C., Morgan B., Tabin C., Development 121, 333 (1995).
103
Nursall J. R., Nature 183, 1170 (1959);
Cloud P. E., Science 160, 729 (1968) ;
Raff R. A., Raff E. C., Nature 228, 1003 (1970);
Towe K. M., Proc. Natl. Acad. Sci. U.S.A. 65, 781 (1970) .
104
A. Krogh, The Comparative Physiology of Respiratory Mechanisms (Univ. of Pennsylvania Press, Philadelphia, 1941);
Runnegar B., Alcheringa 6, 223 (1982).
105
Vermeij G. J., Science 274, 525 (1996).
106
Derry L. A., Kaufman A. J., Jacobsen S. B., Geochim. Cosmochim. Acta 56, 1317 (1992).
107
In oxygenic photosynthesis, CO2 + H2O → CH2O + O2. Although photosynthesis provides the ultimate source of atmospheric oxygen, respiration essentially runs the photosynthetic equation backward, consuming oxygen. The potential for oxygen to accumulate in the atmosphere will arise only when photosynthetically derived organic matter is buried, limiting consumption by respirers. Oxygen not used in respiration may react with old organic matter released during erosion or with reduced species in minerals or in solution, but if rates of oxygen production exceed those of consumption, oxygen will increase in the ocean/atmosphere system. Carbon isotopes provide a proxy for organic C burial rates, with higher values of δ13C indicating a higher burial ratio of organic to carbonate C.
108
Canfield D. E., Teske A., Nature 382, 127 (1996). 109.
Canfield D. E., ibid. 396, 450 (1998).
109
Hoffman P. F., Kaufman A. J., Halvorson G. P., Schrag D. P., Science 281, 1342 (1998).
110
Vidal G., Knoll A. H., Nature 297, 57 (1982).
111
Kimura H., Matsumoto R., Kakuwa Y., Hamdi B., Zibaseresht H., Earth Planet. Sci. Lett. 147, E1 (1997).
112
Bartley J. K., et al., Geol. Mag. 135, 473 (1998).
113
Baud J. A., Magaritz M., Holser W. T., Geol. Rundsch. 78, 649 (1989).
114
S. Bengtson, in Early Life on Earth, S. Bengston, Ed. (Columbia Univ. Press, New York, 1994), pp. 412–425.
115
Butterfield N. J., Paleobiology 23, 247 (1997).
116
Peterson K. J., Cameron R. A., Tagawa K., Satoh N., Davidson E. H., Development 126, 85 (1998).
117
Miklos G. G., Mem. Assoc. Australas. Palaeontol. 15, 7 (1993).
118
Gehling J. G., Alcheringa 11, 337 (1987).
119
McCaffrey M. A., et al., Geochim. Cosmochim. Acta 58, 529 (1994).
120
Brasier M. D., Geol. Soc. Spec. Publ. 70, 341 (1993).
121
We thank M. A. Fedonkin, S. Xiao, and J. P. Grotzinger for permission to photograph some of the specimens in Fig. 1; J. Grenier, L. Olds, and S. Paddock for help with illustrations; H. Bode, E. Davidson, K. Peterson, and G. Budd for pointers; S. Bengtson, N. Shubin, A. Adoutte, E. Davidson, J. Grenier, and G. Halder for comments on the manuscript; and J. Wilson for help with its preparation. A.H.K. is supported in part by the NASA Astrobiology Institute. S.B.C. is an investigator of the Howard Hughes Medical Institute.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 284 | Issue 5423
25 June 1999

Submission history

Published in print: 25 June 1999

Permissions

Request permissions for this article.

Authors

Affiliations

Andrew H. Knoll*
Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
Sean B. Carroll
Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin–Madison, 1525 Linden Drive, Madison, WI 53706, USA.

Notes

*
To whom correspondence should be addressed.

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Biomineralization: Integrating mechanism and evolutionary history, Science Advances, 8, 10, (2022)./doi/10.1126/sciadv.abl9653
    Abstract
  2. Evolutionary Exploitation of Design Options by the First Animals with Hard Skeletons, Science, 288, 5469, (1239-1242), (2021)./doi/10.1126/science.288.5469.1239
    Abstract
  3. Age of Neoproterozoic Bilatarian Body and Trace Fossils, White Sea, Russia: Implications for Metazoan Evolution, Science, 288, 5467, (841-845), (2021)./doi/10.1126/science.288.5467.841
    Abstract
  4. A New Molecular Window on Early Life, Science, 285, 5430, (1025-1026), (2021)./doi/10.1126/science.285.5430.1025
    Abstract
  5. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals, Science, 334, 6059, (1091-1097), (2021)./doi/10.1126/science.1206375
    Abstract
  6. The Story of O2, Science, 322, 5901, (540-542), (2021)./doi/10.1126/science.1162641
    Abstract
  7. Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry, Science, 321, 5891, (949-952), (2021)./doi/10.1126/science.1154499
    Abstract
  8. Late Precambrian Oxygenation; Inception of the Clay Mineral Factory, Science, 311, 5766, (1446-1449), (2021)./doi/10.1126/science.1118929
    Abstract
  9. Animal Evolution and the Molecular Signature of Radiations Compressed in Time, Science, 310, 5756, (1933-1938), (2021)./doi/10.1126/science.1116759
    Abstract
  10. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity, Science, 370, 6515, (2020)./doi/10.1126/science.aba3512
    Abstract
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media