Advertisement
No access
Research Articles

Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes

Science
15 Dec 2000
Vol 290, Issue 5499
pp. 2105-2110

Abstract

The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants.Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

Get full access to this article

View all available purchase options and get full access to this article.

REFERENCES AND NOTES

1
Scott M. P., Cell 100, 27 (2000).
2
Carroll S. B., Cell 101, 577 (2000).
3
The C. elegans Sequencing Consortium, Science 282, 2012 (1998).
4
Adams M. D., et al., Science 287, 2185 (2000).
5
A. Goffeau et al., Nature 387 (suppl.), 5 (1997).
6
N. M. Luscombe, S. E. Austin, H. M. Berman, J. M. Thornton, review available at.
7
The following sequence sets were used: Drosophila, 14,080 predicted protein sequences (file aa_gadfly.dros.Z, available at www.fruitfly.org/sequence/download.html); C. elegans, 19,101 predicted protein sequences (file WormPep 20, available at www.sanger.ac.uk/Projects/C_elegans/wormpep/); and S. cerevisiae, 6308 predicted protein sequences (file orf_trans.fasta.Z, available at ). The complete set of Arabidopsis genomic sequences was retrieved from GenBank and analyzed at Mendel Biotechnology. Version 2.0a19MP-WashU of BLAST was used, including the following settings: with BLOSUM62 scoring matrix, with gapping on, without filter, and with other parameters set to default values. Additional information is available as supplemental material (15).
8
Chervitz S. A., et al., Science 282, 2022 (1998).
9
Lin X., et al., Nature 402, 761 (1999).
10
Mayer K., et al., Nature 402, 769 (1999).
11
Rubin G. M., et al., Science 287, 2204 (2000).
12
Schauser L., Roussis A., Stiller J., Stougaard J., Nature 402, 191 (1999).
13
Boggon T. J., Shan W.-S., Santagata S., Myers S. C., Shapiro L., Science 286, 2119 (1999).
14
Ruvkun G., Hobert O., Science 282, 2033 (1998).
15
16
Blanc G., Barakat A., Guyot R., Cooke R., Delseny M., Plant Cell 12, 1093 (2000).
17
Wolfe K. H., Shields D. C., Nature 387, 708 (1997).
18
The complete set of Arabidopsis transcription factors was compared to itself (all against all) with the TBLASTX and BLASTP programs. The BLASTP comparison was used to generate the data summarized in Table 2. A pair of proteins was considered highly similar if they showed >60% amino acid sequence identity along at least two-thirds of the length of one of them.
19
The ordered list of Arabidopsis clones that have been used to sequence the genome was obtained from The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org). Those genes that formed related pairs or groups were mapped to the clones, and if they were in the same chromosome, the distance between them was calculated.
20
Berg J. M., Shi Y., Science 271, 1081 (1996).
21
Meyerowitz E. M., Trends Genet. 15, M65 (1999).
22
Soullier S., et al., J. Mol. Evol. 48, 517 (1999).
23
Baldauf S. L., Palmer J. D., Proc. Natl. Acad. Sci. U.S.A. 90, 11558 (1993).
24
Cvitanich S., et al., Proc. Natl. Acad. Sci. U.S.A. 97, 8163 (2000).
25
Dyson N., Genes Dev. 12, 2245 (1998).
26
Riechmann J. L., Meyerowitz E. M., Biol. Chem. 379, 633 (1998).
27
Aida M., Ishida T., Fukaki H., Fujisawa H., Tasaka M., Plant Cell 9, 841 (1997).
28
Eulgem T., Rushton P. J., Robatzek S., Somssich I. E., Trends Plant Sci. 5, 199 (2000).
29
Nagano Y., Plant Physiol. 124, 491 (2000).
30
Guilfoyle T., Hagen G., Ulmasov T., Murfett J., Plant Physiol. 118, 341 (1998).
31
Allen M. D., Yamasaki K., Ohme-Takagi M., Tateno M., Suzuki M., EMBO J. 17, 5484 (1998).
32
Richards D. E., Peng J., Harberd N. P., Bioessays 22, 573 (2000).
33
Jin H., Martin C., Plant Mol. Biol. 41, 577 (1999).
34
Braun E. L., Grotewold E., Plant Physiol. 121, 21 (1999).
35
Kranz H., Scholz K., Weisshaar B., Plant J. 21, 231 (2000).
36
Hall L. N., Rossini L., Cribb L., Langdale J. A., Plant Cell 10, 925 (1998).
37
Makino S., et al., Plant Cell Physiol. 41, 791 (2000).
38
Wykoff D. D., Grossman A. R., Weeks D. P., Usuda H., Shimogawara K., Proc. Natl. Acad. Sci. U.S.A. 96, 15336 (1999).
39
The similarity among these proteins was probably not realized before because the sequence of the published maize Golden2 is not available from GenBank.
40
Czarnecka-Verner E., Yuan C.-X., Scharf K.-D., Englich G., Gurley W. B., Plant Mol. Biol. 43, 459 (2000).
41
Schöffl F., Prändl R., Reindl A., Plant Physiol. 117, 1135 (1998).
42
Each Arabidopsis transcription factor was compared by BLASTX and/or BLASTP to a pooled data set that combined the proteomes of Drosophila, C. elegans, and yeast. A default threshold of P < 10−15 was established for the comparison. HSPs with a P value below that threshold were inspected by eye. To be considered significantly similar, the two proteins had to show >50% identity over a region of at least 75% of the length of one of them.
43
Hirayama T., Shinozaki K., Proc. Natl. Acad. Sci. U.S.A. 93, 13371 (1996).
44
Burns C. G., Ohi R., Krainer A. R., Gould K. L., Proc. Natl. Acad. Sci. U.S.A. 96, 13789 (1999).
45
Bürglin T. R., Dev. Genes Evol. 208, 113 (1998).
46
Kortschak R. D., Tucker P. W., Saint R., Trends Biochem. Sci. 25, 294 (2000).
47
Balciunas D., Ronne H., Trends Biochem. Sci. 25, 274 (2000).
48
Riechmann J. L., Meyerowitz E. M., Biol. Chem. 378, 1079 (1997).
49
Theissen G., et al., Plant Mol. Biol. 42, 115 (2000).
50
Alvarez-Buylla E. R., et al., Proc. Natl. Acad. Sci. U.S.A. 97, 5328 (2000).
51
Shi Y., et al., Cell 94, 585 (1998).
52
Germain S., Howell M., Esslemont G. M., Hill C. S., Genes Dev. 14, 435 (2000).
53
Luo D., et al., Cell 99, 367 (1999).
54
Cubas P., Lauter N., Doebley J., Coen E., Plant J. 18, 215 (1999).
55
Bowman J., Curr. Opin. Plant Biol. 3, 17 (2000).
56
InterPro (www.ebi.ac.uk/interpro/) is a database that integrates protein domain and motif sequence patterns from other databases, like PROSITE, Pfam, and PRINTS.
57
We acknowledge the work of all those who have participated in the Arabidopsis Genome Initiative (AGI), as well as the AGI policy of immediate release of sequence data, which made possible the analysis presented here. We thank all of our colleagues at Mendel Biotechnology for their input and work in our functional genomics research program and E. Meyerowitz and F. Ausubel for discussions and comments on the manuscript.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 290 | Issue 5499
15 December 2000

Submission history

Received: 19 October 2000
Accepted: 14 November 2000
Published in print: 15 December 2000

Permissions

Request permissions for this article.

Authors

Affiliations

J. L. Riechmann*
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
J. Heard
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
G. Martin
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
L. Reuber
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
C.-Z. Jiang
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
J. Keddie
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
L. Adam
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
O. Pineda
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
O. J. Ratcliffe
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
R. R. Samaha
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
R. Creelman
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
M. Pilgrim
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
P. Broun
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
J. Z. Zhang
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
D. Ghandehari
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
B. K. Sherman
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.
G. -L. Yu
Mendel Biotechnology, 21375 Cabot Boulevard, Hayward, CA 94545, USA.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Orchestration of Floral Initiation by APETALA1, Science, 328, 5974, (85-89), (2021)./doi/10.1126/science.1185244
    Abstract
  2. Rice Domestication by Reducing Shattering, Science, 311, 5769, (1936-1939), (2021)./doi/10.1126/science.1123604
    Abstract
  3. Collection, Mapping, and Annotation of Over 28,000 cDNA Clones from japonica Rice, Science, 301, 5631, (376-379), (2021)./doi/10.1126/science.1081288
    Abstract
  4. Plants Compared to Animals: The Broadest Comparative Study of Development, Science, 295, 5559, (1482-1485), (2021)./doi/10.1126/science.1066609
    Abstract
  5. ARR1, a Transcription Factor for Genes Immediately Responsive to Cytokinins, Science, 294, 5546, (1519-1521), (2021)./doi/10.1126/science.1065201
    Abstract
  6. Can Genes Explain Biological Complexity?, Science, 292, 5520, (1315-1316), (2021)./doi/10.1126/science.1060852
    Abstract
  7. Functional Annotation of a Full-Length Arabidopsis cDNA Collection, Science, 296, 5565, (141-145), (2002)./doi/10.1126/science.1071006
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media