Advertisement
No access
Research Article
Influenza

Vaccine-Induced Anti-HA2 Antibodies Promote Virus Fusion and Enhance Influenza Virus Respiratory Disease

Science Translational Medicine
28 Aug 2013
Vol 5, Issue 200
p. 200ra114

The (Mis)match Game

Even the most beneficial things—like vaccines—sometimes have a downside. Learning what causes the downside is critical for avoiding it. In the case of viral vaccines, there have been some reports of rare vaccine-induced disease enhancement—for example, vaccine-associated enhanced respiratory disease (VAERD) for influenza. Khurana et al. now report that mismatched strains of the same subtype of influenza may lead to VAERD in pigs.
The authors vaccinated pigs with whole inactivated H1N2 influenza virus. These pigs had enhanced pneumonia and disease after infection with another strain—pH1N1. Looking more closely, the authors found that the immune sera from the H1N2-vaccinated pigs contained high titers of cross-reactive hemagglutinin antibodies. These antibodies actually enhanced pH1N1 infection in cell culture by promoting virus membrane fusion activity, and this enhanced fusion correlated with lung pathology. This mechanism of VAERD should be considered when devising strategies to devise a universal flu vaccine.

Abstract

Vaccine-induced disease enhancement has been described in connection with several viral vaccines in animal models and in humans. We investigated a swine model to evaluate mismatched influenza vaccine-associated enhanced respiratory disease (VAERD) after pH1N1 infection. Vaccinating pigs with whole inactivated H1N2 (human-like) virus vaccine (WIV-H1N2) resulted in enhanced pneumonia and disease after pH1N1 infection. WIV-H1N2 immune sera contained high titers of cross-reactive anti-pH1N1 hemagglutinin (HA) antibodies that bound exclusively to the HA2 domain but not to the HA1 globular head. No hemagglutination inhibition titers against pH1N1 (challenge virus) were measured. Epitope mapping using phage display library identified the immunodominant epitope recognized by WIV-H1N2 immune sera as amino acids 32 to 77 of pH1N1-HA2 domain, close to the fusion peptide. These cross-reactive anti-HA2 antibodies enhanced pH1N1 infection of Madin-Darby canine kidney cells by promoting virus membrane fusion activity. The enhanced fusion activity correlated with lung pathology in pigs. This study suggests a role for fusion-enhancing anti-HA2 antibodies in VAERD, in the absence of receptor-blocking virus-neutralizing antibodies. These findings should be considered during the evaluation of universal influenza vaccines designed to elicit HA2 stem-targeting antibodies.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

Summary

Fig. S1. Pairwise alignment of the HA amino acid sequence of pH1N1 (A/California/04/2009) and H1N2 (A/Swine/Minnesota/02011/2008).
Fig. S2. Phylogenetic tree of HA proteins from human and swine H1 viruses.
Fig. S3. Anti-HA2 antibodies can compete with pH1N1-neutralizing antibodies.
Fig. S4. WIV-H1N2 postvaccination serum antibody binding to N-terminal HA1 domain is mediated by IgM isotype antibody.
Fig. S5. Binding of pH1N1 virus to sialic acid receptor in the absence and presence of WIV-H1N2 sera in SPR assay.
Fig. S6. No enhancement of pH1N1 virus–mediated hemagglutination in the presence of WIV-H1N2 serum antibodies.

Resources

File (5-200ra114_sm.pdf)

REFERENCES AND NOTES

1
Kim H. W., Bellanti J. A., Arrobio J. O., Mills J., Brandt C. D., Chanock R. M., Parrott R. H., Respiratory syncytial virus neutralizing activity in nasal secretions following natural infection. Proc. Soc. Exp. Biol. Med. 131, 658–661 (1969).
2
Polack F. P., Teng M. N., Collins P. L., Prince G. A., Exner M., Regele H., Lirman D. D., Rabold R., Hoffman S. J., Karp C. L., Kleeberger S. R., Wills-Karp M., Karron R. A., A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 196, 859–865 (2002).
3
Fulginiti V. A., Eller J. J., Downie A. W., Kempe C. H., Altered reactivity to measles virus. Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 202, 1075–1080 (1967).
4
Vincent A. L., Swenson S. L., Lager K. M., Gauger P. C., Loiacono C., Zhang Y., Characterization of an influenza A virus isolated from pigs during an outbreak of respiratory disease in swine and people during a county fair in the United States. Vet. Microbiol. 137, 51–59 (2009).
5
Vincent A. L., Lager K. M., Janke B. H., Gramer M. R., Richt J. A., Failure of protection and enhanced pneumonia with a US H1N2 swine influenza virus in pigs vaccinated with an inactivated classical swine H1N1 vaccine. Vet. Microbiol. 126, 310–323 (2008).
6
Gauger P. C., Vincent A. L., Loving C. L., Lager K. M., Janke B. H., Kehrli M. E., Roth J. A., Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus. Vaccine 29, 2712–2719 (2011).
7
Gauger P. C., Vincent A. L., Loving C. L., Henningson J. N., Lager K. M., Janke B. H., Kehrli M. E., Roth J. A., Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus. Vet. Pathol. 49, 900–912 (2012).
8
Caton A. J., Brownlee G. G., Yewdell J. W., Gerhard W., The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31, 417–427 (1982).
9
Khurana S., Larkin C., Verma S., Joshi M. B., Fontana J., Steven A. C., King L. R., Manischewitz J., McCormick W., Gupta R. K., Golding H., Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines. Vaccine 29, 5657–5665 (2011).
10
Khurana S., Verma N., Yewdell J. W., Hilbert A. K., Castellino F., Lattanzi M., Del Giudice G., Rappuoli R., Golding H., MF59 adjuvant enhances diversity and affinity of antibody-mediated immune response to pandemic influenza vaccines. Sci. Transl. Med. 3, 85ra48 (2011).
11
Khurana S., Verma N., Talaat K. R., Karron R. A., Golding H., Immune response following H1N1pdm09 vaccination: Differences in antibody repertoire and avidity in young adults and elderly populations stratified by age and gender. J. Infect. Dis. 205, 610–620 (2012).
12
Verma N., Dimitrova M., Carter D. M., Crevar C. J., Ross T. M., Golding H., Khurana S., Influenza virus H1N1pdm09 infections in the young and old: Evidence of greater antibody diversity and affinity for the hemagglutinin globular head domain (HA1 domain) in the elderly than in young adults and children. J. Virol. 86, 5515–5522 (2012).
13
Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C., Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).
14
Zhu L., Li Y., Li S., Li H., Qiu Z., Lee C., Lu H., Lin X., Zhao R., Chen L., Wu J. Z., Tang G., Yang W., Inhibition of influenza A virus (H1N1) fusion by benzenesulfonamide derivatives targeting viral hemagglutinin. PLoS One 6, e29120 (2012).
15
Hunziker W., Mellman I., Expression of macrophage–lymphocyte Fc receptors in Madin–Darby canine kidney cells: Polarity and transcytosis differ for isoforms with or without coated pit localization domains. J. Cell Biol. 109, 3291–3302 (1989).
16
Yewdell J. W., Gerhard W., Bachi T., Monoclonal anti-hemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/834-mediated hemolysis. J. Virol. 48, 239–248 (1983).
17
Ghendon Y., Markushin S., Heider H., Melnikov S., Lotte V., Haemagglutinin of influenza A virus is a target for the antiviral effect of Norakin. J. Gen. Virol. 67 (Pt. 6), 1115–1122 (1986).
18
Kumlin U., Olofsson S., Dimock K., Arnberg N., Sialic acid tissue distribution and influenza virus tropism. Influenza Other Respi. Viruses 2, 147–154 (2008).
19
Van Poucke S. G., Nicholls J. M., Nauwynck H. J., Van Reeth K., Replication of avian, human and swine influenza viruses in porcine respiratory explants and association with sialic acid distribution. Virol. J. 7, 38 (2010).
20
Nelli R. K., Kuchipudi S. V., White G. A., Perez B. B., Dunham S. P., Chang K. C., Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet. Res. 6, 4 (2010).
21
Medina R. A., García-Sastre A., Influenza A viruses: New research developments. Nat. Rev. Microbiol. 9, 590–603 (2011).
22
Webster R. G., Bean W. J., Gorman O. T., Chambers T. M., Kawaoka Y., Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992).
23
Forrest H. L., Webster R. G., Perspectives on influenza evolution and the role of research. Anim. Health Res. Rev. 11, 3–18 (2010).
24
Fairbairn L., Kapetanovic R., Sester D. P., Hume D. A., The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease. J. Leukoc. Biol. 89, 855–871 (2011).
25
Swindle M. M., Makin A., Herron A. J., Clubb F. J., Frazier K. S., Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356 (2012).
26
Meurens F., Summerfield A., Nauwynck H., Saif L., Gerdts V., The pig: A model for human infectious diseases. Trends Microbiol. 20, 50–57 (2012).
27
Braucher D. R., Henningson J. N., Loving C. L., Vincent A. L., Kim E., Steitz J., Gambotto A. A., Kehrli M. E., Intranasal vaccination with replication-defective adenovirus type 5 encoding influenza virus hemagglutinin elicits protective immunity to homologous challenge and partial protection to heterologous challenge in pigs. Clin. Vaccine Immunol. 19, 1722–1729 (2012).
28
Throsby M., van den Brink E., Jongeneelen M., Poon L. L., Alard P., Cornelissen L., Bakker A., Cox F., van Deventer E., Guan Y., Cinatl J., ter Meulen J., Lasters I., Carsetti R., Peiris M., de Kruif J., Goudsmit J., Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3, e3942 (2008).
29
Sui J., Hwang W. C., Perez S., Wei G., Aird D., Chen L. M., Santelli E., Stec B., Cadwell G., Ali M., Wan H., Murakami A., Yammanuru A., Han T., Cox N. J., Bankston L. A., Donis R. O., Liddington R. C., Marasco W. A., Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).
30
Ekiert D. C., Bhabha G., Elsliger M. A., Friesen R. H., Jongeneelen M., Throsby M., Goudsmit J., Wilson I. A., Antibody recognition of a highly conserved influenza virus epitope. Science 324, 246–251 (2009).
31
Corti D., Sallusto F., Lanzavecchia A., High throughput cellular screens to interrogate the human T and B cell repertoires. Curr. Opin. Immunol. 23, 430–435 (2011).
32
Tan G. S., Krammer F., Eggink D., Kongchanagul A., Moran T. M., Palese P., A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J. Virol. 86, 6179–6188 (2012).
33
Khurana S., Suguitan A. L., Rivera Y., Simmons C. P., Lanzavecchia A., Sallusto F., Manischewitz J., King L. R., Subbarao K., Golding H., Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets. PLoS Med. 6, e1000049 (2009).
34
Khurana S., Chearwae W., Castellino F., Manischewitz J., King L. R., Honorkiewicz A., Rock M. T., Edwards K. M., Del Giudice G., Rappuoli R., Golding H., Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus. Sci. Transl. Med. 2, 15ra5 (2010).
35
Monsalvo A. C., Batalle J. P., Lopez M. F., Krause J. C., Klemenc J., Hernandez J. Z., Maskin B., Bugna J., Rubinstein C., Aguilar L., Dalurzo L., Libster R., Savy V., Baumeister E., Cabral G., Font J., Solari L., Weller K. P., Johnson J., Echavarria M., Edwards K. M., Chappell J. D., Crowe J. E., Williams J. V., Melendi G. A., Polack F. P., Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat. Med. 17, 195–199 (2011).
36
To K. K., Zhang A. J., Hung I. F., Xu T., Ip W. C., Wong R. T., Ng J. C., Chan J. F., Chan K. H., Yuen K. Y., High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza. Clin. Vaccine Immunol. 19, 1012–1018 (2012).
37
To K. K., Chan K. H., Li I. W., Tsang T. Y., Tse H., Chan J. F., Hung I. F., Lai S. T., Leung C. W., Kwan Y. W., Lau Y. L., Ng T. K., Cheng V. C., Peiris J. S., Yuen K. Y., Viral load in patients infected with pandemic H1N1 2009 influenza A virus. J. Med. Virol. 82, 1–7 (2010).
38
Platt R., Vincent A. L., Gauger P. C., Loving C. L., Zanella E. L., Lager K. M., Kehrli M. E., Kimura K., Roth J. A., Comparison of humoral and cellular immune responses to inactivated swine influenza virus vaccine in weaned pigs. Vet. Immunol. Immunopathol. 142, 252–257 (2011).
39
Loebbermann J., Durant L., Thornton H., Johansson C., Openshaw P. J., Defective immunoregulation in RSV vaccine-augmented viral lung disease restored by selective chemoattraction of regulatory T cells. Proc. Natl. Acad. Sci. U.S.A. 110, 2987–2992 (2013).
40
Rudraraju R., Jones B. G., Sealy R., Surman S. L., Hurwitz J. L., Respiratory syncytial virus: Current progress in vaccine development. Viruses 5, 577–594 (2013).
41
Murphy B. R., Prince G. A., Walsh E. E., Kim H. W., Parrott R. H., Hemming V. G., Rodriguez W. J., Chanock R. M., Dissociation between serum neutralizing and glycoprotein antibody responses of infants and children who received inactivated respiratory syncytial virus vaccine. J. Clin. Microbiol. 24, 197–202 (1986).
42
Murphy B. R., Walsh E. E., Formalin-inactivated respiratory syncytial virus vaccine induces antibodies to the fusion glycoprotein that are deficient in fusion-inhibiting activity. J. Clin. Microbiol. 26, 1595–1597 (1988).
43
Delgado M. F., Coviello S., Monsalvo A. C., Melendi G. A., Hernandez J. Z., Batalle J. P., Diaz L., Trento A., Chang H. Y., Mitzner W., Ravetch J., Melero J. A., Irusta P. M., Polack F. P., Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med. 15, 34–41 (2009).
44
Shaw C. A., Otten G., Wack A., Palmer G. A., Mandl C. W., Mbow M. L., Valiante N., Dormitzer P. R., Antibody affinity maturation and respiratory syncytial virus disease. Nat. Med. 15, 725 (2009).
45
Halbur P. G., Paul P. S., Frey M. L., Landgraf J., Eernisse K., Meng X. J., Lum M. A., Andrews J. J., Rathje J. A., Comparison of the pathogenicity of two US porcine reproductive and respiratory syndrome virus isolates with that of the Lelystad virus. Vet. Pathol. 32, 648–660 (1995).
46
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S., MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science Translational Medicine
Volume 5 | Issue 200
August 2013

Submission history

Received: 6 April 2013
Accepted: 26 June 2013

Permissions

Request permissions for this article.

Acknowledgments

We thank J. Yewdell, M. Eichelberger, and C. Weiss for their thorough review and insightful comments. We also thank M. Harland and G. Nordholm for technical assistance and J. Huegel, J. Crabtree, and T. Standley for assistance with animal studies. Funding: Funding was provided by Agricultural Research Service, U.S. Department of Agriculture (USDA). Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. USDA is an equal opportunity provider and employer. Author contributions: S.K., C.L.L., A.L.V., and H.G. designed and performed the experiments, analyzed the data, and wrote and edited the paper. J.M., L.R.K., J.H., and P.C.G. performed the experiments, analyzed the data, and read the paper. Competing interests: The authors declare that they have no competing interests.

Authors

Affiliations

Surender Khurana
Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
Crystal L. Loving
Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA.
Jody Manischewitz
Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
Lisa R. King
Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
Phillip C. Gauger
Department of Veterinary Diagnostic and Production Animal Medicine, Ames, IA 50010, USA.
Jamie Henningson
Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS 66506, USA.
Amy L. Vincent* [email protected]
Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA.
Hana Golding* [email protected]
Division of Viral Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.

Notes

*
Corresponding author. E-mail: [email protected] (H.G.); [email protected] (A.L.V.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Intermediate Levels of Pre-Existing Protective Antibody Allow Priming of Protective T Cell Immunity against Influenza, The Journal of Immunology, 210, 5, (628-639), (2023).https://doi.org/10.4049/jimmunol.2200393
    Crossref
  2. Vaccination decreases the risk of influenza A virus reassortment but not genetic variation in pigs, eLife, 11, (2022).https://doi.org/10.7554/eLife.78618
    Crossref
  3. Nano/microparticle Formulations for Universal Influenza Vaccines, The AAPS Journal, 24, 1, (2022).https://doi.org/10.1208/s12248-021-00676-9
    Crossref
  4. Evaluating α-galactosylceramide as an adjuvant for live attenuated influenza vaccines in pigs, Animal Diseases, 2, 1, (2022).https://doi.org/10.1186/s44149-022-00051-x
    Crossref
  5. Human Antibodies for Viral Infections, Annual Review of Immunology, 40, 1, (349-386), (2022).https://doi.org/10.1146/annurev-immunol-042718-041309
    Crossref
  6. Vaccine-Associated Enhanced Respiratory Disease following Influenza Virus Infection in Ferrets Recapitulates the Model in Pigs, Journal of Virology, 96, 5, (2022).https://doi.org/10.1128/jvi.01725-21
    Crossref
  7. Early vaccine‐mediated strain‐specific cytokine imbalance induces mild immunopathology during influenza infection, Immunology & Cell Biology, (2022).https://doi.org/10.1111/imcb.12608
    Crossref
  8. Low quality antibody responses in critically ill patients hospitalized with pandemic influenza A(H1N1)pdm09 virus infection, Scientific Reports, 12, 1, (2022).https://doi.org/10.1038/s41598-022-18977-0
    Crossref
  9. Reverse genetics based H5N2 vaccine provides clinical protection against H5N1, H5N8 and H9N2 avian influenza infection in chickens, Vaccine, 40, 48, (6998-7008), (2022).https://doi.org/10.1016/j.vaccine.2022.10.018
    Crossref
  10. Bivalent hemagglutinin and neuraminidase influenza replicon particle vaccines protect pigs against influenza a virus without causing vaccine associated enhanced respiratory disease, Vaccine, 40, 38, (5569-5578), (2022).https://doi.org/10.1016/j.vaccine.2022.07.042
    Crossref
  11. See more
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media