Skip to main content
Log in

Influence of Forced Running Loads on the Content of Na+/K+-ATPase Isoforms and Monovalent Cations in Skeletal Muscles of Mice with a Model of Type II Diabetes Mellitus

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The effect of forced running for 1 hour daily for 4 weeks on the content of Na+/K+-ATPase isoforms and monovalent cations in the skeletal muscles of mice with a model of type II diabetes mellitus (DM-II) was studied. To form a model of the disease, a high-fat diet was used, and physical activity in the form of forced running was carried out for 4 weeks. The content of Na+/K+-ATPase isoforms and Na+ and K+ ions in muscle tissue of m.gastrocnemius was determined by Western blotting and atomic absorption spectrophotomery, respectively. It has been shown that the formation of DM-II in mice is accompanied by changes in the content of Na+/K+-ATPase alpha 1 and 2 isoforms in muscle tissue. The effect of forced running loads on the content of Na+/K+-ATPase in muscle tissue is significant and primarily differs in age groups. One can also note a certain dependence of the influence of forced running loads on the content of this enzyme on the time of their use. In young animals, changes in the concentrations of monovalent sodium and potassium cations after forced running loads were less pronounced. In aged mice, against the background of forced loads, an increase in the content of sodium and decrease in the content of potassium in muscle tissue was observed. The detected changes in monovalent cations content in the muscle tissue of mice with diabetes mellitus II under the influence of forced running loads may play a role in the implementation of the metabolic effects of physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Groop LC, Eriksson JG (1992) The etiology and pathogenesis of non-insulin-dependent diabetes. Ann Med 24(6): 483–489. https://doi.org/10.1002/dmr.5610090503

    Article  CAS  PubMed  Google Scholar 

  2. Fujimaki S, Kuwabara T (2017) Diabetes-induced dysfunction of mitochondria and stem cells in skeletal muscle and the nervous system. Int J Mol Sci 18(10): 2147. https://doi.org/10.3390/ijms18102147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Højlund K (2014) Metabolism and insulin signaling in common metabolic disorders and inherited insulin resistance. Dan Med J 61(7): B4890.

    PubMed  Google Scholar 

  4. Nagy C, Einwallner E (2018) Study of In vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). J Vis Exp 7(131): 1–12. https://doi.org/10.3791/56672

    Article  CAS  Google Scholar 

  5. Huh JY (2018) The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 41(1): 14–29. https://doi.org/10.1007/s12272-017-0994-y

    Article  CAS  PubMed  Google Scholar 

  6. Zakharova AN, Milovanova KG, Orlova AA, Dyakova EY, Kalinnikova JG, Kollantay OV, Shuvalov IY, Chibalin AV, Kapilevich LV (2023) Effects of Treadmill Running at Different Light Cycles in Mice with Metabolic Disorders. Int J Mol Sci 24: 15132. https://doi.org/10.3390/ijms242015132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Winzell MS, Ahren B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53(3): S215–S219. https://doi.org/10.2337/diabetes.53.suppl_3.s215

    Article  PubMed  Google Scholar 

  8. Meneilly GS (2001) Pathophysiology of diabetes in the elderly. In: Diabetes in old age. John Wiley and Sons. 155–164. https://doi.org/10.1002/0470842326.ch2

    Chapter  Google Scholar 

  9. Brandt C, Pedersen BK (2010) The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. J Biomed Biotechnol 2010: 520258. https://doi.org/10.1155/2010/520258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hansen JS, Zhao X, Irmler M, Liu X, Hoene M, Scheler M, Li Y, Beckers J, Hrabĕ de Angelis M, Häring HU, Pedersen BK, Lehmann R, Xu G, Plomgaard P, Weigert C (2015) Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery. Diabetologia 58(8): 1845–1854. https://doi.org/10.1007/s00125-015-3584-x

    Article  CAS  PubMed  Google Scholar 

  11. Karstoft K, Pedersen BK (2016) Exercise and type 2 diabetes: focus on metabolism and inflammation. Immunol Cell Biol 94: 146–150. https://doi.org/10.1038/icb.2015.101

    Article  CAS  PubMed  Google Scholar 

  12. Kapilevich L, Zakharova A, Kabachkova A, Kironenko T, Milovanova K, Orlov S (2017) Different impact of physical activity on plasma myokines content in athletes and untrained volunteers. FEBS J 284(1): 370–373.

    Google Scholar 

  13. Kapilevich LV, Zakharova AN, Kabachkova AV, Kironenko TA, Orlov SN (2017) Dynamic and static exercises differentially affect plasma cytokine content in elite endurance- and strength-trained athletes and untrained volunteers. Front Physiol 30(8): 35. https://doi.org/10.3389/fphys.2017.00035

    Article  Google Scholar 

  14. Jurkat-Rott K, Fauler M, Lehmann-Horn F (2006) Ion channels and ion transporters of the transverse tubular system of skeletal muscle. J Muscle Res Cell Motil 27: 275–290. https://doi.org/10.1007/s10974-006-9088-z

    Article  PubMed  Google Scholar 

  15. Sejersted OM, Sjogaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise Physiol Rev 80: 1411–1481. https://doi.org/10.1152/physrev.2000.80.4.1411

  16. McDonough AA, Thompson CB, Youn JH (2002) Skeletal muscle regulates extracellular potassium, Am J Physiol Ren Physiol 282: F967–F974. https://doi.org/10.1152/ajprenal.00360.2001

  17. McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- -disturbances and Na-K pump inactivation: implications for fatigue. J Appl Phys 104: 288–295. https://doi.org/10.1152/japplphysiol.01037.2007

    Article  CAS  Google Scholar 

  18. Murphy KT, Nielsen OB, Clausen T (2008) Analysis of exerciseinduced Na+-K+ exchange in rat skeletal muscle. Exp Physiol 93: 1249–1262. https://doi.org/10.1113/expphysiol.2008.042457

    Article  CAS  PubMed  Google Scholar 

  19. Cairns SP, Lindinger MI (2008) Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 586: 4039–4054. https://doi.org/10.1113/jphysiol.2008.155424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Orlov SN, Koltsova SV, Kapilevich LV, Gusakova SV, Dulin NO (2015) KCC1 and NKCC2: The pathogenetic role of cation-chloride cotransporters in hypertension. Genes and Disease 2: 186–196. https://doi.org/10.1016/j.gendis.2015.02.007

    Article  Google Scholar 

  21. Smolyaninova LV, Koltsova SV, Sidorenko SV, Orlov SN (2017) Augmented gene expression triggered by Na+,K+-ATPase inhibition: Role of Cai2+ -mediated and—independent excitation-transcription coupling. Cell Calcium 68: 5–13. https://doi.org/10.1016/j.ceca.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  22. Sidorenko S, Klimanova E, Milovanova K, Lopina OD, Kapilevich LV, Chibalin AV, Orlov SN (2018) Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: Role of Ca2+i-mediated and Ca2+i-independent signaling and elevated [Na+]i/[K+]i ratio. Cell Calcium 76: 72–86. https://doi.org/10.1016/j.ceca.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  23. Kapilevich LV, Kironenko TA, Zaharova AN (2015) Skeletal muscle as an endicrine organ: role of [Na+]i/[K+]i-mediated excitation-transcription coupling. Genes & Diseas 2: 328–336. https://doi.org/10.1016/j.gendis.2015.10.001

    Article  Google Scholar 

  24. Lauritzen HP, Brandauer J, Schjerling P (2013) Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo. Diabetes 62: 3081–3092. https://doi.org/10.2337/db12-1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jannot MF, Dufayet De La Tour DT, Coste P (2002) Na/K ATPase activity in Diabetic Patient Metabolism. Diabetes mellitus 51(3): 284–291.

    CAS  Google Scholar 

  26. Shamansurova ZM, Mukhamedova FA, Tsoi AG, Tashmanova AB, Alieva AV, Akhrarova NA (2009) Abnormal Na-K-ATPase activity in erythrocytes from patients with diabetes mellitus. Diabetes mellitus 12(2): 55–57. https://doi.org/10.14341/2072-0351-5399

    Article  Google Scholar 

  27. Chistyakova OV, Sukhov IB, Dobretsov MG, Kubasov IV (2020) Study of Na/K-ATPase activity in the myocardium of rats under experimental conditions of prediabetes and diabetes mellitus. J Evol Biochem Physiol 56(2): 166–168. https://doi.org/10.1134/S0022093020020118

    Article  Google Scholar 

  28. Kapilevich LV, Milovanova KG, Sidorenko SV, Fedorov DA, Kironenko TA, Zakharova AN, Dyakova EYu, Orlov SN (2020) Influence of dynamic and static loads on the content of sodium and potassium in mouse skeletal muscles. Bull Exp Biol Med 169(1): 4–7. https://doi.org/10.1007/s10517-020-04811-y

    Article  CAS  Google Scholar 

  29. Klimanova EA, Sidorenko SV, Tverskoi AM, Shiyan AA, Smolyaninova LV, Kapilevich LV, Gusakova SV, Maksimov GV, Lopina OD, Orlov SN (2019) Search for Intracellular Sensors Involved in the Functioning of Monovalent Cations as Secondary Messengers. Biochemistry (Moscow) 84(11): 1280–1295. https://doi.org/10.1134/S0006297919110063

  30. Shiyan AA, Sidorenko SV, Fedorov D, Klimanova EA, Smolyaninova LV, Kapilevich LV, Grygorczyk R, Orlov SN (2019) Elevation of intracellular Na+ contributes to expression of early response genes triggered by endothelial cell shrinkage. Cell Physiol Biochem 53(4): 638–647. https://doi.org/10.33594/000000162

    Article  CAS  PubMed  Google Scholar 

  31. Smolyaninova LV, Shiyan AA, Kapilevich LV, Lopachev AV, Fedorova TN, Klementieva TS, Moskovtsev AA, Kubatiev AA, Orlov SN (2019) Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- аnd α1-Na+,K+-ATPase-mediated signaling. PLoS One 14(9): e0222767. https://doi.org/10.1371/journal.pone.0222767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kapilevich LV, Zakharova AN, Dyakova EYu, Kalinnikova JG, Chibalin AV (2019) Mice experimental model of diabetes mellitus type ii based on high fat diet. Bull Siber Med 18(3): 53–61. https://doi.org/10.20538/1682-0363-2019-3-53-61

    Article  Google Scholar 

  33. Zakharova AN, Kalinnikova Y, Negodenko ES, Orlova AA, Kapilevich LV (2020) Experimental simulation of cyclic training loads. Teor Prakt Fizich Kult 10: 26–27.

    Google Scholar 

  34. Clausen T (2013) Quantification of Na, K pumps and their transport rate in skeletal muscle: Functional significance. J General Physiol 142(4): 327–345. https://doi.org/10.1085/jgp.201310980

    Article  CAS  Google Scholar 

  35. Raue U, Trappe TA, Estrem ST, Qian H-R, Helvering LM, Smith RC, Trappe S (2012) Transcriptomic signature of resistance exercise adaptations: mixed muscle and fiber type specific profiles in young and old adults. J Appl Physiol 112: 1625–1636. https://doi.org/10.1152/japplphysiol.00435.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl- disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Phys 104: 288–295. https://doi.org/10.1152/japplphysiol.01037.2007

    Article  CAS  Google Scholar 

  37. Koltsova SV, Trushina Y, Haloui M, Akimova OA, Tremblay J, Hamet P, Orlov SN (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for [Ca2+]i-independent excitation-transcription coupling. PLoS One 7: e38032. https://doi.org/10.1371/journal.pone.0038032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research was supported by the Russian Science Foundation grant no. 19-15-00118, https://rscf.ru/project/19-15-00118-р.

Author information

Authors and Affiliations

Authors

Contributions

Idea of the work and planning of the experiment (A.N.Z., A.V.Ch., and L.V.K.), data collection (O.V.K., A.A.O., I.Yu.Sh., and Yu.G.K.), data processing (A.N.Z., K.G.M., and E.Yu.D.), writing and editing of the article (A.N.Z., K.G.M., and L.V.K.), approval of the final version of the article to be published (A.V.Ch. and L.V.K.).

Corresponding author

Correspondence to L. V. Kapilevich.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national and/or institutional principles of animal care and use were observed. All procedures performed in studies involving animals complied with the ethical standards approved by the legal acts of the Russian Federation, the principles of the Basel Declaration and the recommendations of the Bioethics Commission of the Biological Institute of Tomsk State University (Minutes no. 32 of December 02, 2019).

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Dyomina

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 12, pp. 1920–1934https://doi.org/10.31857/S0869813923120142.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, A.N., Milovanova, K.G., Orlova, A.A. et al. Influence of Forced Running Loads on the Content of Na+/K+-ATPase Isoforms and Monovalent Cations in Skeletal Muscles of Mice with a Model of Type II Diabetes Mellitus. J Evol Biochem Phys 59, 2355–2366 (2023). https://doi.org/10.1134/S0022093023060364

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023060364

Keywords:

Navigation