Skip to main content
Log in

Changes in the plasma levels of myokines after different physical exercises in athletes and untrained individuals

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The influence of dynamic and static load on the plasma level of myokines in strength-and endurance-trained athletes and untrained subjects has been studied. The range of myokines has been found to depend on the type of loads and the level of fitness. Dynamic and static exercises have different effects on the level of myokines in athletes and untrained subjects. The dynamic load increases the level of IL-6 and IL-8 in the plasma of athletes, while the static load increases the concentration of IL-15 and LIF. At the same time, no increase in the level of IL-8 after cyclic loading or in IL-15 after a static load has been observed in the control group. These differences may be based on a number of mechanisms. The cellular composition of skeletal muscles and the phenotypic features of muscle fibers, changing as a result of regular exercise, can modify the processes of myokine production. However, the processes of transcription in muscle fibers are much more important; the most important ones are HIF-1α, [Ca2+]i and [Na+]i/[K+]i-dependent intracellular signaling pathways. The modification of these mechanisms caused by different physical loads and intensity is of great interest since it is a promising way to influence the metabolic processes at the cellular and systemic levels, which is very helpful in both improving athletic performance and correcting metabolic disorders in a number of socially significant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frontera, W.R. and Ochala, J., Skeletal muscle: A brief review of structure and function, Calcif. Tissue Int., 2015, vol. 96, no. 3, p. 183.

    Article  CAS  PubMed  Google Scholar 

  2. Sprenger, H., Jacobs, C., Nain, M., et al., Enhanced release of cytokines, interleukin-2 receptors, and neopterin after long-distance running, Clin Immunol. Immunopathol., 1992, vol. 63, no. 2, p. 188.

    CAS  PubMed  Google Scholar 

  3. Drenth, J.P., Van Uum, S.H., van Deuren, M., et al., Endurance run increases circulating IL-6 and IL-1ra but downregulates ex vivo TNF-a and IL-1ß production, J. Appl. Physiol., 1995, vol. 79, no. 5, p. 1497.

    CAS  PubMed  Google Scholar 

  4. Nehlsen-Cannarella, S.L., Fagoaga, O.R., Nieman, D.C., et al., Carbohydrate and the cytokine response to 2.5 h of running, J. Appl. Physiol., 1997, vol. 82, no. 5, p. 1662.

    CAS  PubMed  Google Scholar 

  5. Ostrowski, K., Ronde, T., Asp, S., et al., Pro-and antiinflammatory cytokine balance in strenuous exercise in humans, J. Physiol., 1999, vol. 515, p. 287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Steensberg, A., van Hall, G., Osada, T., et al., Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6, J. Physiol., 2000, vol. 529, p. 237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keller, C., Steensberg, A., Pilegaard, H., et al., Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: Influence of muscle glycogen content, FASEB J., 2001, vol. 15, no. 14, p. 2748.

    CAS  PubMed  Google Scholar 

  8. Nedachi, T., Fujita, H., and Kanzaki, M., Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle, Am. J. Physiol.: Endocrinol. Metab., 2008, vol. 295, no. 5, p. E1191.

    Article  CAS  Google Scholar 

  9. Lambernd, S., Taube, A., Schober, A., et al., Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signaling pathways, Diabetologia, 2012, no. 55, no. 4, p. 1128.

    Article  CAS  PubMed  Google Scholar 

  10. Nikolic, N., Bakke, S.S., Kase, E.T., et al., Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise, PLoS One, 2012, vol. 7, no. 3, p. e33203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scheler, M., Irmler, M., Lehr, S., et al., Cytokine response of primary human myotubes in an in vitro exercise model, Am. J. Physiol.: Cell Physiol., 2013, vol. 305, no. 8, p. C877.

    Article  CAS  Google Scholar 

  12. Kapilevich, L.V., Kabachkova, A.V., Zakharova, A.N., et al., Secretory function of skeletal muscles: Producing mechanisms and myokines physiological effects, Usp. Fiziol. Nauk, vol. 47, no. 2, p. 7.

  13. Pedersen, B.K. and Febbraio, M.A., Muscle as an endocrine organ: Focus on muscle-derived interleukin-6, Physiol. Rev., 2008, vol. 88, no. 4, p. 1379.

    Article  CAS  PubMed  Google Scholar 

  14. Iizuka, K., Machida, T., and Hirafuji, M., Skeletal muscle is an endocrine organ, J. Pharmacol. Sci., 2014, vol. 125, no. 2, p. 125.

    Article  CAS  PubMed  Google Scholar 

  15. Pedersen, B.K. and Febbraio, M.A., Muscles, exercise and obesity: Skeletal muscle as a secretory organ, Nat. Rev. Endocrinol., 2012, vol. 8, no. 8, p. 457.

    Article  CAS  PubMed  Google Scholar 

  16. Shvarts, V., Metabolic processes regulation by Interleukin 6, Tsitokiny Vospalenie, 2009, no. 3, p. 3.

    Google Scholar 

  17. Pedersen, B.K., Steensberg, A., Fischer, C., et al., Searching for the exercise factor?: Is IL-6 a candidate?, J. Muscle Res. Cell Motil., 2003, vol. 24, nos. 2–3, p. 113.

    Article  CAS  PubMed  Google Scholar 

  18. Pedersen, B.K. and Fischer, C.P., Beneficial health effects of exercise: The role of IL-6 as a myokine, Trends Pharmacol. Sci., 2007, vol. 28, no. 4, p. 152.

    Article  CAS  PubMed  Google Scholar 

  19. Quinn, L.S., Strait-Bodey, L., Anderson, B.G., et al., Interleukin-15 stimulates adiponectin secretion by 3T3-L1 adipocytes: Evidence for a skeletal muscle-tofat signaling pathway, Cell Biol. Int., 2005, vol. 29, no. 6, p. 449.

    Article  CAS  PubMed  Google Scholar 

  20. Broholm, C. and Pedersen, B.K., Leukemia inhibitory factor–an exercise-induced myokine, Exercise Immunol. Rev., 2010, vol. 16, p. 77.

    Google Scholar 

  21. Srikuea, R., Esser, K.A., and Pholpramool, Ch., Lekemia factor is expressed in rat gastrocnemius muscle after contusion and increases proliferation of rat L6 myoblasts via c-Myc signaling, Clin. Exp. Pharmacol. Physiol., 2011, vol. 38, no. 8, p. 501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pedersen, B.K. and Saltin, B., Exercise as medicine–evodence for prescribing exercise as therapy in 26 different chronic diseases, Scand. J. Med. Sci. Sports, 2015, no. 25, p. 1.

    Article  PubMed  Google Scholar 

  23. Ochi, E., Nakazato, K., and Ishii, N., Muscular hypertrophy and changes in cytokine production after eccentric training in the rat skeletal muscle, J. Strength Cond. Res., 2011, vol. 25, no. 8, p. 2283.

    Article  PubMed  Google Scholar 

  24. Karamouzis, M., Landberg, H., Skovgaard, D., et al., In situ microdyalysis of intramascular prostaglandin and thromboxane in contracting skeletal muscle in humans, Acta Physiol. Scand., 2001, vol. 171, no. 1, p. 71.

    CAS  PubMed  Google Scholar 

  25. Louis, E., Raue, U., Yang, Y., et al., Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle, J. Appl. Physiol., 2007, vol. 103, no. 5, p. 1744.

    Article  CAS  PubMed  Google Scholar 

  26. Coffey, V.G., Zhong, Z., Shield, A., et al., Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans, FASEB J., 2006, vol. 20, no. 1, p. 190.

    CAS  PubMed  Google Scholar 

  27. Egan, B. and Zierath, J.R., Exercise metabolism and the molecular regulation of skeletal muscle adaptation, Cell Metab., 2013, vol. 17, no. 2, p. 162.

    Article  CAS  PubMed  Google Scholar 

  28. Peake, J.M., Gatta, P.D., Suzuki, K., and Nieman, D.C., Cytokine expression and secretion by skeletal muscle cells: Regulatory mechanisms and exercise effects, Exercise Immunol. Rev., 2015, vol. 21, p. 8.

    Google Scholar 

  29. Svannshvili, R.A., Sopromadze, Z.G., Kakhabrishvili, Z.G., et al., Atheltes’ physical working capacity, Georgian Med. News, 2009, vol. 166, p. 68.

    Google Scholar 

  30. Broholm, C., Laye, M.J., Brandt, C., et al., LIF is a contraction-induced myokine stimulating human myocyte proliferation, J. Appl. Physiol., 2011, vol. 111, no. 1, p. 251.

    Article  CAS  PubMed  Google Scholar 

  31. Fisher, C.P., Interleikin-6 in acute exercise and training: What is the biological relevance?, Exercise Immunol. Rev., 2006, vol. 12, p. 6.

    Google Scholar 

  32. Fitts, R.H. and Widrick, J.J., Muscle mechanics: Adaptations with exercise-training, in Exercise and Sport Sciences Reviews, Holloszy, J.O., Ed., Williams & Wilkins, 1996, vol. 24, p. 427.

    Article  CAS  PubMed  Google Scholar 

  33. Raue, U., Trappe, T.A., Estrem, S.T., et al., Transcriptomic signature of resistance exercise adaptations: Mixed muscle and fiber type specific profiles in young and old adults, J. Appl. Physiol., 2012, vol. 112, no. 10, p. 1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gundersen, K., Excitation-transcription coupling in skeletal muscle: The molecular pathways of exercise, Biol. Rev., 2011, vol. 86, no. 3, p. 564.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kapilevich, L.V., Kironenko, T.A., Zaharova, A.N., et al., Skeletal muscle as an endocrine organ: Role of [Na+]i/[K+]i-mediated excitation-transcription coupling, Genes Dis., 2015, vol. 2, no. 4, p. 328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ke, Q. and Costa, M., Hypoxia-inducible factor-1 (HIF-1), Mol. Pharmacol., 2006, vol. 70, no. 5, p. 1469.

    Article  CAS  PubMed  Google Scholar 

  37. Rodriguez-Miguelez, P., Lima-Cabello, E., Martinez-Florez, S., et al., Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise, J. Appl. Physiol., 2015, vol. 118, no. 8, p. 1075.

    Article  CAS  PubMed  Google Scholar 

  38. Crane J.D., MacNeil L.G., Lally J.S. et al. Exercisestimulated interleukin-15 is controlled by AMPK and regulates skin metabolism and aging, Aging Cell, 2015, vol. 14, no. 4, p. 625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lauritzen, H.P., Brandauer, J., Schjerling, P., et al., Contraction and AICAR stimulate IL-6 vesicle depletion from skeletal muscle fibers in vivo, Diabetes, 2013, no. 62, p. 3081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma, H., Groth, R.D., Wheeler, D.G., et al., Excitation-transcription coupling in sympathetic neurons and the molecular mechanism of its initiation, Neurosci. Res., 2011, vol. 70, no. 1, p. 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santana, L.F., NFAT-dependent excitation-transcription coupling in heart, Circ. Res., 2008, no. 103, p. 681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holmes, A.G., Watt, M.J., Carey, A.L., and Febbraio, M.A., Ionomycin, but not physiological doses of epinephrine, stimulates skeletal muscle interleukin-6 mRNA expression and protein release, Metabolism, 2004, vol. 53, no. 11, p. 1492.

    CAS  Google Scholar 

  43. Whitham, M., Chan, M.H.S., Pal, M., et al., Contraction-induced interleukin-6 gene transcription in skeletal muscle is regulated by c-Jun terminal kinase/activator protein-1, J. Biol. Chem., 2012, vol. 287, no. 14, p. 10771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nedachi, T., Hatakeyama, H., Kono, T., et al., Charactrization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes, Am. J. Physiol.: Endocrinol. Metab., 2009, vol. 297, no. 4, p. E866.

    CAS  Google Scholar 

  45. Sejersted, O.M. and Sjøgaard, G., Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise, Physiol. Rev., 2000, vol. 80, no. 4, p. 1411.

    CAS  PubMed  Google Scholar 

  46. McDonough, A.A., Thompson, C.B., and Youn, J.H., Skeletal muscle regulates extracellular potassium, Am. J. Physiol.: Renal Physiol., 2002, vol. 282, no. 6, p. F967.

    CAS  Google Scholar 

  47. McKenna, M.J., Bangsbo, J., and Renaud, J.M., Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: Implications for fatigue, J. Appl. Physiol., 2008, vol. 104, no. 1, p. 288.

    Article  CAS  PubMed  Google Scholar 

  48. Murphy, K.T., Nielsen, O.B., and Clausen, T., Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle, Exp. Physiol., 2008, vol. 93, no. 12, p. 1249.

    Article  CAS  PubMed  Google Scholar 

  49. Cairns, S.P. and Lindinger, M.I., Do multiple ionic interactions contribute to skeletal muscle fatigue?, J. Physiol., 2008, vol. 586, no. 17, p. 4039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koltsova, S.V., Trushina, Y., Haloui, M., et al., Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: Evidence for [Ca2+]i-independent excitation-transcription coupling, PLoS One, 2012, vol. 7, no. 5, p. e38032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Koltsova, S.V., Tremblay, J., Hamet, P., and Orlov, S.N., Transcriptomic changes in Ca2+-depleted cells: Role of elevated intracellular [Na+]/[K+] ratio, Cell Calcium, 2015, vol. 58, no. 3, p. 317.

    Article  CAS  PubMed  Google Scholar 

  52. Koltsova, S.V., Shilov, B., Burulina, J.G., et al., Transcriptomic changes triggered by hypoxia: evidence for HIF-1a -independent, [Na+]i/[K+]i-mediated excitation-transcription coupling, PLoS One, 2014, vol. 9, no. 11, p. e110597.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kapilevich.

Additional information

Original Russian Text © L.V. Kapilevich, A.N. Zakharova, A.V. Kabachkova, T.A. Kironenko, E.Yu. Dyakova, S.N. Orlov, 2017, published in Fiziologiya Cheloveka, 2017, Vol. 43, No. 3, pp. 87–95.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapilevich, L.V., Zakharova, A.N., Kabachkova, A.V. et al. Changes in the plasma levels of myokines after different physical exercises in athletes and untrained individuals. Hum Physiol 43, 312–319 (2017). https://doi.org/10.1134/S0362119717030070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119717030070

Keywords

Navigation