Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Factors contributing to the fatigue-related reduction in active dorsiflexion joint range of motion

Publication: Applied Physiology, Nutrition, and Metabolism
21 November 2012

Abstract

Reductions in active joint range of motion (ROM) are responsible for decreased work-generating capacity during fatiguing repetitive isotonic shortening contractions. Factors responsible for impairing the joint-angle-specific net torque developed during muscle shortening could include fatigue-induced torque loss, shortening-induced torque depression in the agonist muscle, and opposing passive tension of the antagonists, but these have not been systematically explored. Nine men (aged 25.8 ± 2.0 years) performed a maximal-effort fatiguing task that consisted of repetitive loaded shortening dorsiflexions through a 40° ankle joint ROM until active ROM decreased by 50%. Torque developed during contractile shortening, as well as passive opposing tension, was quantified before and after the reduction in active ROM. Before fatigue, and compared with maximum voluntary isometric contraction torque at the terminal ROM, shortening-induced torque depression in the agonist muscle and passive tension from the antagonists reduced net torque developed at the end of contractile shortening by ∼42% and ∼19%, respectively. After fatigue, a steepened ascending joint torque–angle relationship remained during contractile shortening, but neither muscle coactivation nor contractile slowing contributed to the fatigue-induced torque loss. Fatigue-induced torque loss, shortening-induced torque depression in the agonist, and passive tension in the antagonist greatly depressed net torque developed at the end of contractile shortening. These contributed to the fatigue-induced reduction in active ROM by impairing the ability of the dorsiflexors to generate sufficient torque to overcome the imposed load at the end of contractile shortening.

Résumé

La diminution de l'amplitude de mouvement actif (« ROM ») est la cause de la diminution de la capacité de travail au cours d'une série de contractions miométriques isotoniques jusqu'à épuisement. Les facteurs responsables de la diminution du moment de force net spécifique à l'angle au cours du raccourcissement des muscles seraient la diminution du moment de force induit par la fatigue, la diminution du moment de force du muscle agoniste due au raccourcissement et la tension passive provenant du muscle antagoniste; cependant, il n'y a pas d'études systématiques traitant de ces facteurs. Neuf jeunes hommes âgés de 25,8 ± 2,0 ans effectuent une tâche épuisante comportant une série de dorsiflexions maximales avec charge sur un angle de 40° à la cheville jusqu'à ce que la ROM diminue de 50 %. Avant et après la diminution de la ROM active, on évalue le moment de force généré au cours de l'activité contractile de raccourcissement du muscle et la tension passive antagoniste. Avant l'installation de la fatigue et comparativement au moment de force maximale isométrique volontaire généré à la fin de la ROM, on observe une diminution de ∼42 % du moment de force du muscle agoniste suscitée par le raccourcissement et de ∼19 % de tension passive antagoniste exercée à l'angle terminal de l'activité contractile de raccourcissement. Après l'installation de la fatigue, on observe la même relation ascendante marquée du moment de force – angle de cheville au cours de l'activité contractile de raccourcissement; néanmoins, ni la coactivation musculaire, ni le ralentissement de l'activité contractile ne contribuent à la diminution du moment de force suscitée par la fatigue. La diminution du moment de force suscitée par la fatigue, la diminution du moment de force suscitée par le raccourcissement du muscle agoniste et la tension passive exercée par le muscle antagoniste ont un effet marqué sur la diminution nette du moment de force observée à la fin de l'activité contractile de raccourcissement. Ces facteurs contribuent à la diminution de l'amplitude de mouvement actif suscitée par la fatigue, et ce, en diminuant la capacité de production suffisante de force des fléchisseurs dorsaux pour déplacer la charge à la fin de l'activité contractile de raccourcissement.

Get full access to this article

View all available purchase options and get full access to this article.

References

Aagaard P., Simonsen E.B., Andersen J.L., Magnusson S.P., Bojsen-Moller F., and Dyhre-Poulsen P. 2000. Antagonist muscle coactivation during isokinetic knee extension. Scand. J. Med. Sci. Sports, 10(2): 58–67.
Arabadzhiev T.I., Dimitrov V.G., Dimitrova N.A., and Dimitrov G.V. 2010. Interpretation of EMG integral or RMS and estimates of “neuromuscular efficiency” can be misleading in fatiguing contraction. J. Electromyogr. Kinesiol. 20(2): 223–232.
Babault N., Pousson M., Michaut A., and VanHoecke J. 2003. Effect of quadriceps femoris muscle length on neural activation during isometric and concentric contractions. J. Appl. Physiol. 94(3): 983–990.
Behm D.G., Whittle J., Button D., and Power K. 2002. Intermuscle differences in activation. Muscle Nerve, 25(2): 236–243.
Bigland-Ritchie B.R., Furbush F.H., Gandevia S.C., and Thomas C.K. 1992. Voluntary discharge frequencies of human motoneurons at different muscle lengths. Muscle Nerve, 15(2): 130–137.
Bigland-Ritchie B., Rice C.L., Garland S.J., and Walsh M.L. 1995. Task-dependent factors in fatigue of human voluntary contractions. Adv. Exp. Med. Biol. 384: 361–380.
Cheng A.J. and Rice C.L. 2005. Fatigue and recovery of power and isometric torque following isotonic knee extensions. J. Appl. Physiol. 99(4): 1446–1452.
Cheng A.J. and Rice C.L. 2009. Isometric torque and shortening velocity following fatigue and recovery of different voluntary tasks in the dorsiflexors. Appl. Physiol. Nutr. Metab. 34: 866–874.
Cheng A.J. and Rice C.L. 2010. Voluntary activation in the triceps brachii at short and long muscle lengths. Muscle Nerve, 41: 63–70.
Cheng A.J., Davidson A.W., and Rice C.L. 2010. The influence of muscle length on the fatigue-related reduction in joint range of motion of the human dorsiflexors. Eur. J. Appl. Physiol. 109: 405–415.
Chung L.H., Callahan D.M., and Kent-Braun J.A. 2007. Age-related resistance to skeletal muscle fatigue is preserved during ischemia. J. Appl. Physiol. 103(5): 1628–1635.
de Ruiter C.J. and de Haan A. 2003. Shortening-induced depression of voluntary force in unfatigued and fatigued human adductor pollicis muscle. J. Appl. Physiol. 94(1): 69–74.
Edwards R.H., Hill D.K., Jones D.A., and Merton P.A. 1977. Fatigue of long duration in human skeletal muscle after exercise. J. Physiol. 272(3): 769–778.
Gandevia S.C. 2001. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 81(4): 1725–1789.
Herbert R.D., Moseley A.M., Butler J.E., and Gandevia S.C. 2002. Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. J. Physiol. 539: 637–645.
Herzog W. and Leonard T.R. 1997. Depression of cat soleus-forces following isokinetic shortening. J. Biomech. 30(9): 865–872.
Herzog W., Leonard T.R., and Wu J.Z. 2000. The relationship between force depression following shortening and mechanical work in skeletal muscle. J. Biomech. 33(6): 659–668.
Joumaa V. and Herzog W. 2010. Force depression in single myofibrils. J. Appl. Physiol. 108(2): 356–362.
Joumaa V., Macintosh B.R., and Herzog W. 2012. New insights into force depression in skeletal muscle. J. Exp. Biol. 215: 2135–2140.
Kato E., Kanehisa H., Fukunaga T., and Kawakami Y. 2010. Changes in ankle joint stiffness due to stretching: The role of tendon elongation of the gastrocnemius muscle. Eur. J. Sport Sci. 10(2): 111–119.
Kebaetse M.B., Lee S.C., and Binder-Macleod S.A. 2001. A novel stimulation pattern improves performance during repetitive dynamic contractions. Muscle Nerve, 24(6): 744–752.
Kebaetse M.B., Turner A.E., and Binder-Macleod S.A. 2002. Effects of stimulation frequencies and patterns on performance of repetitive, nonisometric tasks. J. Appl. Physiol. 92(1): 109–116.
Kellis E. 1999. The effects of fatigue on the resultant joint moment, agonist and antagonist electromyographic activity at different angles during dynamic knee extension efforts. J. Electromyogr. Kinesiol. 9(3): 191–199.
Klass M., Guissard N., and Duchateau J. 2004. Limiting mechanisms of force production after repetitive dynamic contractions in human triceps surae. J. Appl. Physiol. 96(4): 1516–1521.
Klein C.S., Rice C.L., and Marsh G.D. 2001. Normalized force, activation, and coactivation in the arm muscles of young and old men. J. Appl. Physiol. 91(3): 1341–1349.
Kubo K., Tsunoda N., Kanehisa H., and Fukunaga T. 2004. Activation of agonist and antagonist muscles at different joint angles during maximal isometric efforts. Eur. J. Appl. Physiol. 91(2–3): 349–352.
Lee E.J. and Herzog W. 2009. Shortening-induced force depression is primarily caused by cross-bridges in strongly bound states. J. Biomech. 42(14): 2336–2340.
Lee H.D., Suter E., and Herzog W. 1999. Force depression in human quadriceps femoris following voluntary shortening contractions. J. Appl. Physiol. 87(5): 1651–1655.
Lee S.C., Becker C.N., and Binder-Macleod S.A. 2000. Activation of human quadriceps femoris muscle during dynamic contractions: effects of load on fatigue. J. Appl. Physiol. 89(3): 926–936.
Mademli L., Arampatzis A., and Walsh M. 2006. Effect of muscle fatigue on the compliance of the gastrocnemius medialis tendon and aponeurosis. J. Biomech. 39(3): 426–434.
Maganaris C.N. 2001. Force-length characteristics of in vivo human skeletal muscle. Acta Physiol. Scand. 172(4): 279–285.
Maganaris C.N., Baltzopoulos V., and Sargeant A.J. 1998. Differences in human antagonistic ankle dorsiflexor coactivation between legs; can they explain the moment deficit in the weaker plantarflexor leg? Exp. Physiol. 83(6): 843–855.
Marechal G. and Plaghki L. 1979. The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity. J. Gen. Physiol. 73(4): 453–467.
Marsh E., Sale D., McComas A.J., and Quinlan J. 1981. Influence of joint position on ankle dorsiflexion in humans. J. Appl. Physiol. 51(1): 160–167.
McKenna M.J., Bangsbo J., and Renaud J.M. 2008. Muscle K+, Na+, and Cl disturbances and Na+-K+ pump inactivation: implications for fatigue. J. Appl. Physiol. 104(1): 288–295.
McNeil C.J. and Rice C.L. 2007. Fatigability is increased with age during velocity-dependent contractions of the dorsiflexors. J. Gerontol. A Biol. Sci. Med. Sci. 62(6): 624–629.
Morse C.I., Degens H., Seynnes O.R., Maganaris C.N., and Jones D.A. 2008. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J. Physiol. 586(1): 97–106.
Mueller M.J., Minor S.D., Schaaf J.A., Strube M.J., and Sahrmann S.A. 1995. Relationship of plantar-flexor peak torque and dorsiflexion range of motion to kinetic variables during walking. Phys. Ther. 75(8): 684–693.
Rassier D.E. and Herzog W. 2004. Considerations on the history dependence of muscle contraction. J. Appl. Physiol. 96(2): 419–427.
Rassier D.E., MacIntosh B.R., and Herzog W. 1999. Length dependence of active force production in skeletal muscle. J. Appl. Physiol. 86(5): 1445–1457.
Sale D., Quinlan J., Marsh E., McComas A.J., and Belanger A.Y. 1982. Influence of joint position on ankle plantarflexion in humans. J. Appl. Physiol. 52(6): 1636–1642.
Simoneau E., Martin A., and VanHoecke J. 2007. Effects of joint angle and age on ankle dorsi- and plantar-flexor strength. J. Electromyogr. Kinesiol. 17(3): 307–316.
Stauber W.T., Barill E.R., Stauber R.E., and Miller G.R. 2000. Isotonic dynamometry for the assessment of power and fatigue in the knee extensor muscles of females. Clin. Physiol. 20(3): 225–233.
Taylor J.L. and Gandevia S.C. 2008. A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. J. Appl. Physiol. 104(2): 542–550.
Tilp M., Steib S., and Herzog W. 2009. Force-time history effects in voluntary contractions of human tibialis anterior. Eur. J. Appl. Physiol. 106(2): 159–166.
Westerblad H., Lannergren J., and Allen D.G. 1997. Slowed relaxation in fatigued skeletal muscle fibers of Xenopus and Mouse. Contribution of [Ca2+]i and cross-bridges. J. Gen. Physiol. 109(3): 385–399.

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 38Number 5May 2013
Pages: 490 - 497

History

Received: 21 September 2012
Accepted: 13 November 2012
Accepted manuscript online: 21 November 2012
Version of record online: 21 November 2012

Permissions

Request permissions for this article.

Key Words

  1. coactivation
  2. joint excursion
  3. dynamic contraction
  4. antagonist passive tension
  5. shortening-induced force depression
  6. length–tension relationship

Mots-clés

  1. coactivation
  2. mouvement articulaire
  3. contraction dynamique
  4. tension passive antagoniste
  5. diminution de la force suscitée par le raccourcissement
  6. relation tension-longueur

Authors

Affiliations

Arthur J. Cheng*
Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON N6A 5B9, Canada.
Charles L. Rice
Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, and Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, N6A 5B9 Canada.

Notes

*
Present address: Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers väg 8, 171 77 Stockholm, Sweden.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Gait Biomechanics While Walking Down an Incline After Exhaustion
2. Effects of different exercise methods of calf muscles on the hemodynamics of lower extremity vein
3. Effects of leg fatigue due to exhaustive stair climbing on gait biomechanics while walking up a 10˚ incline – implications for evacuation and work safety
4. Effects of Fatigue in the Non-paretic Plantarflexor on the Activities of the Lower Leg Muscles during Walking in Chronic Stroke Patients
5. Oxygen uptake and muscle activity limitations during stepping on a stair machine at three different climbing speeds
6. Partial Compared with Full Range of Motion Resistance Training for Muscle Hypertrophy: A Brief Review and an Identification of Potential Mechanisms
7. Limitations of oxygen uptake and leg muscle activity during ascending evacuation in stairways
8. Rate modulation of human anconeus motor units during high-intensity dynamic elbow extensions
9. Time-course of performance changes and underlying mechanisms during and after repetitive moderately weight-loaded knee extensions
10. Shortening-induced torque depression in old men: Implications for age-related power loss

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media