Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise

Publication: Applied Physiology, Nutrition, and Metabolism
26 March 2013

Abstract

The purpose of the present study was to examine the effects of a high- or low-carbohydrate (CHO) diet on performance, aerobic and anaerobic contribution, and metabolic responses during supramaximal exercise. Six physically-active men first performed a cycling exercise bout at 115% maximal oxygen uptake to exhaustion after following their normal diet for 48 h (∼50% of CHO, control test). Seventy-two hours after, participants performed a muscle glycogen depletion exercise protocol, followed by either a high- or low-CHO diet (∼70 and 25% of CHO, respectively) for 48 h, in a random, counterbalanced order. After the assigned diet period (48 h), the supramaximal cycling exercise bout (115% maximal oxygen consumption) to exhaustion was repeated. The low-CHO diet reduced time to exhaustion when compared with both the control and the high-CHO diet (−19 and −32%, respectively, p < 0.05). The reduced time to exhaustion following the low-CHO diet was accompanied by a lower total aerobic energy contribution (−39%) compared with the high-CHO diet (p < 0.05). However, the aerobic and anaerobic energy contribution at the shortest time to exhaustion (isotime) was similar among conditions (p > 0.05). The low-CHO diet was associated with a lower blood lactate concentration (p < 0.05), with no effect on the plasma concentration of insulin, glucose and K+ (p > 0.05). In conclusion, a low-CHO diet reduces both performance and total aerobic energy provision during supramaximal exercise. As peak K+ concentration was similar, but time to exhaustion shorter, the low-CHO diet was associated with an earlier attainment of peak plasma K+ concentration.

Résumé

Cette étude se propose d’analyser les effets d’un régime riche ou faible en sucres (« CHO ») sur la performance, sur la contribution anaérobie et aérobie et sur les ajustements métaboliques au cours d’un exercice supramaximal. Six hommes physiquement actifs participent à une séance d’exercice à vélo à une intensité sollicitant 115 % du consommation maximale d’oxygène jusqu’à épuisement après avoir suivi un régime alimentaire normal durant 48 h (∼50 % de CHO, test de contrôle). Soixante-douze heures plus tard, les sujets participent à une séance de déplétion du glycogène au moyen d’un exercice, puis suivent un régime riche ou faible en CHO (∼70 % et 25 % de CHO, respectivement) durant 48 h, et ce, de façon aléatoire et contrebalancée. Après les 48 h de régime assigné, les sujets participent une autre fois à la séance d’exercice supramaximal (115 % du consommation maximale d’oxygène) jusqu’à épuisement. Le régime faible en CHO suscite une diminution du temps d’exercice jusqu’à l’épuisement comparativement au test de contrôle et au régime riche en CHO (−19 % et −32 %, respectivement, p < 0,05). Cette diminution du temps jusqu’à l’épuisement, consécutive au régime faible en CHO, est accompagnée d’une plus faible contribution totale (−39 %) du métabolisme aérobie comparativement au régime riche en CHO (p < 0,05). Toutefois, la contribution aérobie et anaérobie de l’énergie au temps de performance le plus court jusqu’à l’épuisement (isochronisme) est similaire d’une condition à l’autre (p > 0,05). Le régime faible en CHO est associé à une plus faible concentration sanguine de lactate (p < 0,05) et n’a pas d’effet sur les concentrations plasmatiques d’insuline, de glucose et de K+ (p > 0,05). En conclusion, un régime faible en CHO suscite une diminution de la performance et de la contribution totale du métabolisme aérobie au cours d’un exercice supramaximal. Du fait que la concentration de K+ de pointe est similaire et que le temps de performance jusqu’à l’épuisement est plus court, le régime faible en CHO est associé à l’atteinte hâtive de la concentration de K+ plasmatique de pointe. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Baldwin J., Snow R.J., Gibala M.J., Granham A., Howarth K., and Febbraio M.A. 2003. Glycogen availability does not affect the TCA cycle or TAN pools during prolonged, fatiguing exercise. J. Appl. Physiol. 94(6): 2181–2187.
Barstow T.J. and Molé P.A. 1991. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise. J. Appl. Physiol. 71(6): 2099–2106.
Bergstrom J., Hermansen L., Hultman E., and Saltin B. 1967. Diet, muscle glycogen and physical performance. Acta Physiol. Scand. 71(2): 140–150.
Bertuzzi R.C., Franchini E., Ugrinowitsch C., Kokubun E., Lima-Silva A.E., Pires F.O., et al. 2010. Predicting MAOD using only a supramaximal exhaustive test. Int. J. Sports Med. 31(7): 477–481.
Bickham D., Le Rossignol P., Gibbons C., and Russell A.P. 2002. Re-assessing accumulated oxygen deficit in middle distance runners. J. Sci. Med. Sport, 5(4): 372–382.
Bishop D., Bonetti D., and Dawson B. 2002. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med. Sci. Sports Exerc. 34(6): 1041–1047.
Bosch A.N., Dennis S.C., and Noakes T.D. 1993. Influence of carbohydrate loading on fuel substrate turnover and oxidation during prolonged exercise. J. Appl. Physiol. 74(4): 1921–1927.
Brozek J., Grande F., Anderson J., and Keys A. 1963. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann. N.Y. Acad. Sci. 110: 113–140.
Carter H., Pringle J.S., Boobis L., Jones A.M., and Doust J.H. 2004. Muscle glycogen depletion alters oxygen uptake kinetics during heavy exercise. Med. Sci. Sports Exerc. 36(6): 965–972.
Clausen T. 2003. Na+-K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 83(4): 1269–1324.
Fukuba Y., Miura A., Endo M., Kan A., Yanagawa K., and Whipp B.J. 2003. The curvature constant parameter of the power-duration curve for varied-power exercise. Med. Sci. Sports Exerc. 35(8): 1413–1418.
Gastin P.B., Costill D.L., Lawson D.L., Krzeminski K., and McConell G.K. 1995. Accumulated oxygen deficit during supramaximal all-out and constant intensity exercise. Med. Sci. Sports Exerc. 27(2): 255–263.
Gollnick P.D., Armstrong R.B., Sembrowich W.L., Shepherd R.E., and Saltin B. 1973. Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J. Appl. Physiol. 34(5): 615–618.
Gollnick P.D., Piehl K., and Saltin B. 1974. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J. Physiol. 241(1): 45–57.
Green H.J. 2004. Membrane excitability, weakness and fatigue. Can. J. Appl. Physiol. 29(3): 291–307.
Green H.J., Duhamel T.A., Foley K.P., Ouyang J., Smith I.C., and Stewart R.D. 2007. Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293(1): R354–R362.
Green S., Langberg H., Skovgaard D., Bulow J., and Kjaer M. 2000. Interstitial and arterial-venous [K+] in human calf muscle during dynamic exercise: effect of ischaemia and relation to muscle pain. J. Physiol. 529(3): 849–861.
Greenhaff P.L., Gleeson M., and Maughan R.J. 1987a. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise. Eur. J. Appl. Physiol. Occup. Physiol. 56(3): 331–337.
Greenhaff P.L., Gleeson M., Whiting P.H., and Maughan R.J. 1987b. Dietary composition and acid-base status: limiting factors in the performance of maximal exercise in man? Eur. J. Appl. Physiol. Occup. Physiol. 56(4): 444–450.
Greenhaff P.L., Gleeson M., and Maughan R.J. 1988. Diet-induced metabolic acidosis and the performance of high intensity exercise in man. Eur. J. Appl. Physiol. Occup. Physiol. 57(5): 583–590.
Hallén J. 1996. K+ balance in humans during exercise. Acta Physiol. Scand. 156(3): 279–286.
Havemann L., West S.J., Goedecke J.H., MacDonald I.A., St Clair Gibson A., Noakes T.D., et al. 2006. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J. Appl. Physiol. 100(1): 194–202.
Heigenhauser G.J.F., Sutton J.R., and Jones N.L. 1983. Effect of glycogen depletion on the ventilatory response to exercise. J. Appl. Physiol. 54(2): 470–474.
Howley E.T., Bassett D.R., and Welch H.G. 1995. Criteria for maximal oxygen uptake: review and commentary. Med. Sci. Sports Exerc. 27(9): 1292–1301.
Jackson A.S. and Pollock M.L. 1978. Generalized equations for predicting body density of men. Br. J. Nutr. 40(3): 497–504.
Lima-Silva A.E., De-Oliveira F.R., Nakamura F.Y., and Gevaerd M.S. 2009. Effect of carbohydrate availability on time to exhaustion in exercise performed at two different intensities. Braz. J. Med. Biol. Res. 42(5): 404–412.
Lima-Silva A.E., Pires F.O., Bertuzzi R.C., Lira F.S., Casarini D., and Kiss M.A. 2011. Low carbohydrate diet affects the oxygen uptake on-kinetics and rating of perceived exertion in high intensity exercise. Psychophysiology, 48: 277–284.
Maughan R.J. and Poole D.C. 1981. The effects of a glycogen-loading regimen on the capacity to perform anaerobic exercise. Eur. J. Appl. Physiol. Occup. Physiol. 46(3): 211–219.
McKenna M.J., Bangsbo J., and Renaud J.-M. 2008. Muscle K+, Na+, and Cl disturbances and Na+–K+ pump inactivation: implications for fatigue. J. Appl. Physiol. 104(1): 288–295.
Medbø J.I., Mohn A.C., Tabata I., Bahr R., Vaage O., and Sejersted O.M. 1988. Anaerobic capacity determined by maximal accumulated O2 deficit. J. Appl. Physiol. 64(1): 50–60.
Norton, K., and Olds, T. 1996. Anthropometrica. University of New South Wale Press, Sydney.
Okamoto K., Wang W., Rounds J., Chambers E.A., and Jacobs D.O. 2001. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 281(3): E479–E488.
Özyener F., Rossiter H.B., Ward S.A., and Whipp B.J. 2001. Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J. Physiol. 533(3): 891–902.
Piehl K. 1974. Time course for refilling of glycogen stores in human muscle fibres following exercise-induced glycogen depletion. Acta Physiol. Scand. 90(2): 297–302.
Poole D.C., Ward S.A., Gardner G.W., and Whipp B.J. 1988. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics, 31(9): 1265–1279.
Ribeiro J.P., Hughes V., Fielding R.A., Holden W., Evans W., and Knuttgen H.G. 1986. Metabolic and ventilatory responses to steady state exercise relative lactate thresholds. Eur. J. Appl. Physiol. 55(2): 215–221.
Romijn J.A., Coyle E.F., Sidossis L.S., Gastaldelli A., Horowitz J.F., Endert E., et al. 1993. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. Endocrinol. Metab. 265(Pt. 1): E380–E391.
Russell A., Le Rossignol P., and Lo S.K. 2000. The precision of estimating the total energy demand: Implications for the determination of the accumulated oxygen deficit. J. Exerc. Physiol. 3(2): 55–63.
Simmonds M.J., Minahan C.L., and Sabapathy S. 2010. Caffeine improves supramaximal cycling but not the rate of anaerobic energy release. Eur. J. Appl. Physiol. 109(2): 287–295.
Sjogaard G. 1990. Exercise-induced muscle fatigue: the significance of potassium. Acta Physiol. Scand. Suppl. 593: 1–63.
Stewart R.D., Duhamel T.A., Foley K.P., Ouyang J., Smith I.C., and Green H.J. 2007. Protection of muscle membrane excitability during prolonged cycle exercise with glucose supplementation. J. Appl. Physiol. 103(1): 331–339.
Vandenberghe K., Hespel P., Eynde B.V., Lysens R., and Richter E.A. 1995. No effect of glycogen level on glycogen metabolism during high intensity exercise. Med. Sci. Sports Exerc. 27(9): 1278–1283.
Vøllestad N.K., Hallén J., and Sejersted O.M. 1994. Effect of exercise intensity on potassium balance in muscle and blood of man. J. Physiol. 475(2): 359–368.
Wagenmakers A.J., Beckers E.D.J., Brouns F., Kuipers H., Soeters P.B., Vusse G.J.V.D., et al. 1991. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am. J. Physiol. Endocrinol. Metab. 260(6): E883–E890.
Weltan S.M., Bosch A.N., Dennis S.C., and Noakes T.D. 1998. Influence of muscle glycogen content on metabolic regulation. Am. J. Physiol. Endocrinol. Metab. 274(1): E72–E82.

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 38Number 9September 2013
Pages: 928 - 934

History

Received: 30 November 2012
Accepted: 21 March 2013
Accepted manuscript online: 26 March 2013
Version of record online: 26 March 2013

Permissions

Request permissions for this article.

Key Words

  1. carbohydrate availability
  2. time to exhaustion
  3. AO2 deficit
  4. metabolism
  5. fatigue
  6. potassium

Mots-clés

  1. disponibilité des sucres
  2. temps jusqu’à l’épuisement
  3. déficit accumulé d’O2
  4. métabolisme
  5. fatigue
  6. potassium

Authors

Affiliations

Adriano E. Lima-Silva
Sports Science Research Group, Federal University of Alagoas. Lorival Melo Mota Avenue S/N, Tabuleiro do Martins, Maceió, Alagoas 57072-970, Brazil.
Flavio O. Pires
Campus I. Catholic University of Brasília. QS 07 lote 01 EPCT, Águas Claras, DF, Brasília 71966-700, Brazil.
Romulo Bertuzzi
Endurance Sports Research Group, School of Physical Education and Sport, University of São Paulo, Professor Mello Moraes Avenue 65, Cidade Universitária, São Paulo, SP 05508900, Brazil.
Marcos D. Silva-Cavalcante
Sports Science Research Group, Federal University of Alagoas. Lorival Melo Mota Avenue S/N, Tabuleiro do Martins, Maceió, Alagoas 57072-970, Brazil.
Rodrigo S.F. Oliveira
Institute of Sport, Exercise and Active Living, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
Maria Augusta Kiss
Endurance Sports Research Group, School of Physical Education and Sport, University of São Paulo, Professor Mello Moraes Avenue 65, Cidade Universitária, São Paulo, SP 05508900, Brazil.
David Bishop
Institute of Sport, Exercise and Active Living, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Dietary and ergogenic supplementation to improve elite swimming players’ performance and recovery
2. Carbohydrate intake before and during high intensity exercise with reduced muscle glycogen availability affects the speed of muscle reoxygenation and performance
3. KRONIKK OG DEBATT
4. Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review
5. Would creatine supplementation augment exercise performance during a low carbohydrate high fat diet?
6. Exercise twice‐a‐day potentiates markers of mitochondrial biogenesis in men
7. Muscle Glycogen Content during Endurance Training under Low Energy Availability
8. Effects of a 12-Week Very-Low Carbohydrate High-Fat Diet on Maximal Aerobic Capacity, High-Intensity Intermittent Exercise, and Cardiac Autonomic Regulation: Non-randomized Parallel-Group Study
9. Nutrition Recommendations for Bodybuilders in the Off-Season: A Narrative Review
10. Consumption of meat, eggs and dairy products is associated with aerobic and anaerobic performance in Brazilian athletes – A cross-sectional study
11. Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers
12. Influence of low versus moderate glycemic index of diet on substrate oxidation and energy expenditure during incremental exercise in endurance athletes: a randomized counterbalanced cross-over trial
13. Effect of pre-exercise carbohydrate availability on fat oxidation and energy expenditure after a high-intensity exercise
14. The effects of active recovery and carbohydrate intake on HRV during 48 hours in athletes after a vigorous-intensity physical activity
15. Effects of carbohydrate intake on time to exhaustion and anaerobic contribution during supramaximal exercise
16. In a single-blind, matched group design: branched-chain amino acid supplementation and resistance training maintains lean body mass during a caloric restricted diet
17. High-CHO diet increases post-exercise oxygen consumption after a supramaximal exercise bout
18. CONSUMO ALIMENTAR, PERFIL ANTROPOMÉTRICO E CONHECIMENTOS EM NUTRIÇÃO DE CORREDORES DE RUA
19. Carbohydrate Metabolism and Fasting
20. Prior Low- or High-Intensity Exercise Alters Pacing Strategy, Energy System Contribution and Performance during a 4-km Cycling Time Trial

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media