Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Mesozoic C-cycle perturbations and climate: evidence for increased resilience of the Cretaceous biosphere to greenhouse pulses

Publication: Canadian Journal of Earth Sciences
15 January 2019

Abstract

The Mesozoic C-isotope record traces the history of the global carbon cycle. Major perturbations of the carbon cycle triggered by extraordinary volcanic activity are recorded in negative spikes coupled with positive C-isotope excursions. Prominent examples are the C-isotope anomaly events at the Permian–Triassic boundary and at the Triassic–Jurassic boundary, in the Toarcian or in the Aptian. While the major volcanic pulses at the Permian–Triassic and Triassic–Jurassic boundaries are considered as the main trigger of mass extinctions, carbon cycle perturbations in the Jurassic and Cretaceous were not accompanied by comparable extreme changes in marine or terrestrial biota. The data suggest either that changes in degassing of large igneous provinces explain the difference in the biota’s response to perturbation or (and) that the resilience of the Mesozoic biosphere to volcanic pulses changed through time. It is hypothesized that two factors contributed to the increased resilience of the biosphere in the Late Mesozoic: (1) starting in the Middle Jurassic, pelagic carbonate developed into an important sink of CO2 in the long-term carbon cycle, contributing to increased resilience of the carbon cycle to perturbations, and (2) increasing fragmentation of Pangea resulted in the establishment of a transequatorial current system coupled with equatorial upwelling. This circulation pattern was intensified during greenhouse pulses. Increased marine productivity and widespread basinal anoxia favoured burial of organic carbon. Increased resilience of the Cretaceous biosphere against volcanic activity may explain why Deccan Trap volcanism was no longer sufficient as a trigger of a mass extinction at the Cretaceous–Paleogene boundary.

Résumé

Le registre mésozoïque des isotopes du C retrace l’histoire du cycle planétaire du carbone. De grandes perturbations du cycle du carbone déclenchées par une activité volcanique exceptionnelle sont enregistrées par des pointes négatives jumelées à des excursions positives des isotopes du C. Parmi les principaux exemples figurent les anomalies d’isotopes du C aux limites Permo–Trias et Trias–Jurassique dans le Toarcien ou dans l’Aptien. Si les grandes pointes d’activité volcanique aux limites Permo–Trias et Trias–Jurassique sont considérées comme les principaux déclencheurs d’extinctions massives, les perturbations du cycle du C au Jurassique et au Crétacé n’étaient pas accompagnées de telles modifications extrêmes des biotes marins ou terrestres. Les données donnent à penser que des modifications du dégazage de grandes provinces ignées expliquent les réactions différentes des biotes aux perturbations ou que la résilience de la biosphère mésozoïque aux pointes de volcanisme a changé au fil du temps. Il est postulé que deux facteurs ont contribué à accroître la résilience de la biosphère au Mésozoïque tardif, à savoir : (1) à partir du Jurassique moyen, le carbonate pélagique est devenu un important puits de CO2 dans le cycle du carbone à long terme, contribuant à accroître la résilience du cycle du carbone aux perturbations, et (2) la fragmentation accrue de la Pangée a mené à l’établissement d’un système de courants transéquatoriaux jumelé à la remontée des eaux équatoriales. Ce mode de circulation s’est intensifié durant des pointes d’effet de serre. Une productivité marine accrue et une anoxie répandue dans les bassins ont favorisé l’enfouissement de carbone organique. La résilience accrue de la biosphère crétacée à l’activité volcanique pourrait expliquer pourquoi le volcanisme des trappes du Deccan n’a pas suffi à déclencher une extinction massive à la limite Crétacé–Paléogène. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Anthony K.R.N., Maynard J.A., Diaz-Pulido G., Mumby P.J., Marshall P.A., Cao L., and Hoegh-Guldberg O.V.E. 2011. Ocean acidification and warming will lower coral reef resilience. Global Change Biology, 17: 1798–1808.
Arthur M.A., Dean W.E., and Schlanger S.E. 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism and changes in atmospheric CO2. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophysical Monograph Series, 32: 504–530.
Bambach R.K., Knoll A.H., and Wang S.C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology, 30(4): 522–542.
Baresel B., Bucher H., Bagherpour B., Brosse M., Guodun K., and Schaltegger U. 2017a. Timing of global regression and microbial bloom linked with the Permian-Triassic boundary mass extinction: implications for driving mechanisms. Scientific Reports, 7: 43630.
Baresel B., d’Abzac F.-X., Bucher H., and Schaltegger U. 2017b. High-precision time-space correlation through coupled apatite and zircon tephrochronology: An example from the Permian-Triassic boundary in South China. Geology, 45(1): 83–86.
Bauer K.W., Zeebe R.E., and Wortmann U.G. 2017. Quantifying the volcanic emissions which triggered Oceanic Anoxic Event 1a and their effect on ocean acidification. Sedimentology, 64(1): 204–214.
Baumgartner, P.O., Rojas-Agramonte, Y., Sandoval-Gutierrez, M., Urbani, F., García-Delgado, D., Garban, G., and Pérez Rodríguez, M. 2013. Late Jurassic breakup of the Proto-Caribbean and circum-global circulation across Pangea. Paper presented at EGU General Assembly Conference Abstracts, 15.
Berner R.A. and Beerling D.J. 2007. Volcanic degassing necessary to produce a CaCO3 undersaturated ocean at the Triassic–Jurassic boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1-4): 368–373.
Bernoulli D. 1972. North Atlantic and Mediterranean Mesozoic Facies: a comparison. U.S. Govt. Printing Office, Washington, D.C., DSDP, 11: 801–822.
Bond D.P. and Wignall P.B. 2014. Large igneous provinces and mass extinctions: an update, Volcanism, Impacts, and Mass Extinctions: Causes and Effects. The Geological Society of America Special Paper, 505: 29–55.
Brack P., Rieber H., Nicora A., and Mundil R. 2005. The global boundary stratotype section and point (GSSP) of the Ladinian Stage (Middle Triassic) at Bagolino (Southern Alps, Northern Italy) and its implications for the Triassic time scale. Episodes, 28: 233–244.
Brinkmann R. and Kayser E. 1966. Brinkmanns Abriss der Geologie: Historische Geologie. Enke.
Budyko, M.I. 2012. The evolution of the biosphere (Vol. 9). Springer Science & Business Media.
Burgess S.D., Muirhead J.D., and Bowring S.A. 2017. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nature Communications, 8(1): 164.
Casellato C. and Erba E. 2015. Calcareous nannofossil biostratigraphy and paleoceanography of the “Toarcian Oceanic Anoxic Event at Colle di Sogno (Southern Alps, Northern Italy). Rivista Italiana di Paleontologia e Stratigrafia, 121(3): 297–327.
Celestino R., Wohlwend S., Reháková D., and Weissert H. 2017. Carbon isotope stratigraphy, biostratigraphy and sedimentology of the Upper Jurassic–Lower Cretaceous Rayda Formation, Central Oman Mountains. Newsletters on Stratigraphy, 50(1): 91–109.
Coccioni A., Nesci O., Tramontana M., Wezel F.C., and Moretti E. 1987. Descrizione di un livello-guida “Radiolaritico-bituminoso ittiolitico” alla base delle marne a fucoidi nell’Appennino umbro-marchigiano. Bollettino della Società Geologica Italiana, 106: 183–192.
Coffin M.F. and Eldholm O. 1994. Large igneous provinces: crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32(1): 1–36.
Crne A.E., Weissert H., Gorican S., and Bernasconi S.M. 2011. A biocalcification crisis at the Triassic-Jurassic boundary recorded in the Budva Basin (Dinarides, Montenegro). Geological Society of America Bulletin, 123(1–2): 40–50.
DeCarlo T.M., Cohen A.L., Barkley H.C., Cobban Q., Young C., Shamberger K.E., et al. 2015. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology, 43: 7–10.
Donnadieu Y., Pucéat E., Moiroud M., Guillocheau F., and Deconinck J.-F. 2016. A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nature Communications, 7: 10316.
Drake J.L., Schaller M.F., Mass T., Godfrey L., Fu A., Sherrell R.M., et al. 2018. Molecular and geochemical perspectives on the influence of CO2 on calcification in coral cell cultures. Limnology and Oceanography, 63(1): 107–121.
Erba E. 1994. Nannofossils and superplumes: the Early Aptian Nannoconid crisis. Paleoceanography, 3: 483–501.
Erba E., Channell J.E., Claps M., Jones C., Larson R., Opdyke B., et al. 1999. Integrated stratigraphy of the Cismon Apticore (southern Alps, Italy); a “reference section” for the Barremian-Aptian interval at low latitudes. The Journal of Foraminiferal Research, 29(4): 371–391.
Erba E., Bottini C., Weissert H.J., and Keller C.E. 2010. Calcareous nannoplankton response to surface-water acidification around Oceanic Anoxic Event 1a. Science, 329: 428–432.
Erba E., Duncan R.A., Bottini C., Tiraboschi D., Weissert H., Jenkyns H.C., and Malinverno A. 2015. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism, The origin, evolution, and environmental impact of oceanic large igneous provinces. Geological Society of America Special Paper, 511: 271–303.
Föllmi K.B., Weissert H., Bisping M., and Funk H.P. 1994. Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geological Society of America Bulletin, 106: 729–746.
Foster W., Lehrmann D., Yu M., Ji L., and Martindale R. 2018. Persistent environmental stress delayed the recovery of marine communities in the aftermath of the latest Permian mass extinction. Paleoceanography and Paleoclimatology, 33(4): 338–353.
Frank T.D., Arthur M.A., and Dean W.E. 1999. Diagenesis of Lower Cretaceous pelagic carbonates, North Atlantic; paleoceanographic signals obscured. The Journal of Foraminiferal Research, 29(4): 340–351.
Galli M.T., Jadoul F., Bernasconi S.M., and Weissert H. 2005. Anomalies in global carbon cycling and extinction at the Triassic/Jurassic boundary: evidence from a marine C-isotope record. Palaeogeography Palaeoclimatology Palaeoecology, 216(3–4): 203–214.
Galli M.T., Jadoul F., Bernasconi S.M., Cirilli S., and Weissert H. 2007. Stratigraphy and palaeoenvironmental analysis of the Triassic–Jurassic transition in the western Southern Alps (Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1–4): 52–70.
Garrels, R.M., Mackenzie, F.T., and Hunt, C. 1973. Chemical cycles and the global environment: assessing human influences. United States.
Garrison R.E. and Fischer A.G. 1969. Deep-water limestones and radiolarites of the Alpine Jurassic. In Depositional Environments in Carbonate Rocks. SEPM Society for Sedimentary Geology Special Publications, 14: 20–55.
Gill G.A., Santantonio M., and Lathuilière B. 2004. The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sedimentary Geology, 166(3–4): 311–334.
Guex J., Bartolini A., Atudorei V., and Taylor D. 2004. High-resolution ammonite and carbon isotope stratigraphy across the Triassic–Jurassic boundary at New York Canyon (Nevada). Earth and Planetary Science Letters, 225(1–2): 29–41.
Guex J., Pilet S., Müntener O., Bartolini A., Spangenberg J., Schoene B., et al. 2016. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Scientific Reports, 6: 23168.
Gulick, S., Morgan, J., Mellett, C.L., Chenot, E., Christeson, G.L., Claeys, P. et al. 2017. Expedition 364 preliminary report: Chicxulub: drilling the K-Pg impact crater. International Ocean Discovery Program.
Hallam, A., and Wignall, P.B. 1997. Mass extinctions and their aftermath. Oxford University Press, UK, 320 pp.
Hautmann M. 2004. Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass extinction. Facies, 50(2): 257–261.
Hay, W.W. 1970. Sedimentation rates: Calcium carbonate compensation. In Initial Reports DSDP 4. Edited by Bader, R.G., Gerard, R.D. et al. Washington, U.S. Govt. Printing Office, pp. 668–672.
Hay W.W. 2017. Toward understanding Cretaceous climate—An updated review. Science China Earth Sciences, 60: 5–19.
Heimhofer U., Adatte T., Hochuli P.A., Burla S., and Weissert H. 2008. Coastal sediments from the Algarve: low-latitude climate archive for the Aptian-Albian. International Journal of Earth Sciences, 97(4): 785–797.
Henehan M.J., Hull P.M., Penman D.E., Rae J.W.B., and Schmidt D.N. 2016. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Philosophical Transactions of the Royal Society B: Biological Sciences, 371: 20150510.
Hermann E., Hochuli P.A., Bucher H., Vigran J.O., Weissert H., and Bernasconi S.M. 2010. A close-up view of the Permian–Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark Platform). Global and Planetary Change, 74(3–4): 156–167.
Hesselbo S.P., Robinson S.A., Surlyk F., and Piasecki S. 2002. Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: A link to initiation of massive volcanism? Geology, 30(3): 251–254.
Hochuli P.A., Vigran J.O., Hermann E., and Bucher H. 2010. Multiple climatic changes around the Permian-Triassic boundary event revealed by an expanded palynological record from mid-Norway. Geological Society of America Bulletin, 122(5–6): 884–896.
Hochuli P.A., Sanson-Barrera A., Schneebeli-Hermann E., and Bucher H. 2016. Severest crisis overlooked—Worst disruption of terrestrial environments postdates the Permian–Triassic mass extinction. Scientific Reports, 6: 28372.
Hochuli P.A., Schneebeli-Hermann E., Mangerud G., and Bucher H. 2017. Evidence for atmospheric pollution across the Permian-Triassic transition. Geology, 45(12): 1123–1126.
Holling C.S. 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1): 1–23.
Hotinski R.M. and Toggweiler J.R. 2003. Impact of a Tethyan circumglobal passage on ocean heat transport and “equable” climates. Paleoceanography, 18(1):.
Hsü K.J. 1976. Paleoceanography of the Mesozoic alpine Tethys. Geological Society of America, Special Paper, 170.
Hsü K.J., He Q., McKenzie J.A., Weissert H., Perch-Nielsen K., Oberhänsli H., et al. 1982. Mass mortality and its environmental and evolutionary consequences. Science, 216: 249–256.
Huang C., Hinnov L., Fischer A.G., Grippo A., and Herbert T. 2010. Astronomical tuning of the Aptian Stage from Italian reference sections. Geology, 38(10): 899–902.
Huck S., Heimhofer U., Rameil N., Bodin S., and Immenhauser A. 2011. Strontium and carbon-isotope chronostratigraphy of Barremian–Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a. Earth and Planetary Science Letters, 304: 547–558.
Jackson, E., and Schlanger, S. 1976. Regional synthesis, Line Islands Chain, and Manihiki Plateau, central Pacific Ocean. In Initial Reports of the Deep Sea Drilling Project, Volume 33. Edited by Schlanger, S.O., Jackson, E.D. et al. Washington, U.S. Government Printing Office, DSDP Leg 33, Init. Rept, DSDP, 33: 915–927.
Jenkyns H.C. 2010. Geochemistry of oceanic anoxic events. Geochemistry, Geophysics Geosystems, 11: Q03004.
Jost A.B., Bachan A., van de Schootbrugge B., Brown S.T., DePaolo D.J., and Payne J.L. 2017. Additive effects of acidification and mineralogy on calcium isotopes in Triassic/Jurassic boundary limestones. Geochemistry, Geophysics, Geosystems, 18(1): 113–124.
Kälin O. 1980. Schizosphaerella punctulata Deflandre and Dangeard: wall ultrastructure and preservation in deeper-water carbonate sediments of the Tethyan Jurassic Eclogae Geologicae Helvetiae, 73: 983–1008.
Keller, G. 2012. The Cretaceous–Tertiary mass extinction, Chicxulub impact, and Deccan volcanism, Earth and Life. Springer, pp. 759–793.
Kiessling W. and Simpson C. 2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17(1): 56–67.
Korte C., Hesselbo S.P., Jenkyns H.C., Rickaby R.E., and Spötl C. 2009. Palaeoenvironmental significance of carbon- and oxygen-isotope stratigraphy of marine Triassic–Jurassic boundary sections in SW Britain. Journal of the Geological Society, 166(3): 431–445.
Kuroda J., Ogawa N.O., Tanimizu M., Coffin M.F., Tokuyama H., Kitazato H., and Ohkouchi N. 2007. Contemporaneous massive subaerial volcanism and late cretaceous Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 256: 211–223.
Larson R.L. 1991. Latest pulse of the earth: evidence for a mid-Cretaceous superplume. Geology, 19: 47–550.
Lasaga A.C., Berner R.A., and Garrels R.M. 1985. An improved geochemical model of atmospheric CO2 fluctuations over the past 100 million years. The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present. Geophysical Monograph Series, 32: 397–411.
Lechler M., von Strandmann P.A.P., Jenkyns H.C., Prosser G., and Parente M. 2015. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth and Planetary Science Letters, 432: 210–222.
Lini A., Weissert H., and Erba E. 1992. The Valanginian carbon isotope event: a first episode of greenhouse climate conditions during the Cretaceous. Terra Nova, 4: 374–384.
Lovelock, J. 1979. Gaia, a new look at life on earth. Oxford University Press, Oxford.
Lovelock J.E. and Margulis L. 1974. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus, 26: 2–10.
Lowery C.M., Bralower T.J., Owens J.D., Rodríguez-Tovar F.J., Jones H., Smit J., et al. 2018. Rapid recovery of life at ground zero of the end-Cretaceous mass extinction. Nature, 558: 288–291.
Margulis, L., and Hinkle, G. 1991. The biota and Gaia: 150 years of support for environmental sciences, in Scientist on Gaia. Edited by S.H. Schneider, and P.J. Boston. MIT Press, Cambridge, Mass., USA, pp. 11–18.
McElwain J.C., Beerling D.J., and Woodward F.I. 1999. Fossil plants and global warming at the Triassic-Jurassic boundary. Science, 285(5432): 1386–1390.
Méhay S., Keller C.E., Bernasconi S.M., Weissert H., Erba E., Bottini C., and Hochuli P.A. 2009. A volcanic CO2 pulse triggered the Cretaceous Oceanic Anoxic Event 1a and a biocalcification crisis. Geology, 37(9): 819–822.
Menegatti A., Weissert H., Brown R., Tyson R., Farrimond P., Strasser A., and Caron M. 1998. High resolution 13C-stratigraphy through the Early Aptian “Livello Selli equivalente” of the alpine Tethys. Paleoceanography, 13(5): 530–545.
Millán M., Weissert H., Fernández-Mendiola P., and García-Mondéjar J. 2009. Impact of Early Aptian carbon cycle perturbations on evolution of a marine shelf system in the Basque-Cantabrian Basin (Aralar, N Spain). Earth and Planetary Science Letters, 287(3–4): 392–401.
Oberhänsli H., Hsü K.J., Piasecki S., and Weissert H. 1989. Permian-Triassic carbon-isotope anomaly in Greenland and in the Southern Alps. Hist. Biology, 2: 37–49.
Pälike H., Lyle M.W., Nishi H., Raffi I., Ridgwell A., Gamage K., et al. 2012. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 488: 609–614.
Parrish J.T. 1993. Climate of the supercontinent Pangea. The Journal of Geology, 101: 215–233.
Pascual-Cebrian E., Götz S., Bover-Arnal T., Skelton P.W., Gili E., Salas R., and Stinnesbeck W. 2016. Calcite/aragonite ratio fluctuations in Aptian rudist bivalves: Correlation with changing temperatures. Geology, 44(2): 135–138.
Pindell J., Kennan L., Maresch W.V., Stanek K., Draper G., and Higgs R. 2005. Plate-kinematics and crustal dynamics of circum-Caribbean arc-continent interactions: Tectonic controls on basin development in Proto-Caribbean margins. Geological Society of America Special Paper, 394: 7–52.
Rais P., Louis-Schmid B., Bernasconi S.M., and Weissert H. 2007. Palaeoceanographic and palaeoclimatic reorganization around the Middle–Late Jurassic transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 251(3–4): 527–546.
Rampino M.R., Prokoph A., and Adler A. 2000. Tempo of the end-Permian event: High-resolution cyclostratigraphy at the Permian-Triassic boundary. Geology, 28(7): 643–646.
Renne P.R. and Basu A.R. 1991. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science, 253: 176–179.
Schlager W. 1981. The paradox of drowned reefs and carbonate platforms. Geological Society of America Bulletin, 92: 197–211.
Schlanger S.O. and Jenkyns H.C. 1976. Cretaceous anoxic events: causes and consequences. Geologie en Mijnbouw, 55: 179–184.
Schneebeli-Hermann E., Kürschner W.M., Hochuli P.A., Ware D., Weissert H., Bernasconi S.M., et al. 2013. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology, 41(5): 579–582.
Schoene B., Guex J., Bartolini A., Schaltegger U., and Blackburn T.J. 2010. Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology, 38(5): 387–390.
Scholle P. and Arthur M.A. 1980. Carbon isotopic fluctuations in pelagic limestones: Potential stratigraphic and petroleum exploration tool. American Association of Petroleum Geologists, 64: 67–87.
Schulte P., Alegret L., Arenillas I., Arz J.A., Barton P.J., Bown P.R., et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327(5970): 1214–1218.
Sha J. 2002. Hispanic Corridor formed as early as Hettangian: On the basis of bivalve fossils. Chinese Science Bulletin, 47: 414–417.
Sobolev S.V., Sobolev A.V., Kuzmin D.V., Krivolutskaya N.A., Petrunin A.G., Arndt N.T., et al. 2011. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature, 477(7364): 312–316.
Sokolov B. 1981. Paleontology, geology, and the evolution of the biosphere. Problemy evolyutsii geologicheskikh protsessov/Problems of Evolution of the Geological Processes: 156–166.
Song H., Wignall P.B., Tong J., and Yin H. 2013. Two pulses of extinction during the Permian–Triassic crisis. Nature Geoscience, 6(1): 52–56.
Suess, E. 1875. Die Entstehung der Alpen, W. Braumüller, 168p.
Sun Y., Joachimski M.M., Wignall P.B., Yan C., Chen Y., Jiang H., et al. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338(6105): 366–370.
Thierstein H.R. 1976. Mesozoic calcareous nannoplankton biostratigraphy of marine sediments. Marine Micropaleontology, 1: 325–362.
Thierstein, H. 1979. Paleoceanographic implications of organic carbon and carbonate distribution in Mesozoic Deep Sea Sediments. In Deep Drilling Results in the Atlantic Ocean: Continental margins and paleoenvironment. Edited by M. Talwani, Hay, W.B., and Ryan, W.B.F. American Geophysical Union, pp. 249–274.
Trabucho Alexandre J., Tuenter E., Henstra G.A., van der Zwan K.J., van de Wal R.S.W., Dijkstra H.A., and de Boer P.L. 2010. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography, 25: PA4201.
Tremolada F., Bornemann A., Bralower T.J., Koeberl C., and van de Schootbrugge B. 2006. Paleoceanographic changes across the Jurassic/Cretaceous boundary: the calcareous phytoplankton response. Earth and Planetary Science Letters, 241: 361–371.
Uvarov B.P. 1934. Geochemistry of Living Matter. Nature, 134: 11–12.
Van De Schootbrugge B. and Gollner S. 2013. Altered primary production during mass-extinction events. The Paleontological Society Papers, 19: 87–114.
Van Hinte J.E., Wise S.W. Jr, Biart B.N., Covington J.M., Dunn D.A., Haggerty J.A., et al. 1985. DSDP Site 603: First deep (> 1000-m) penetration of the continental rise along the passive margin of eastern North America. Geology, 13(6): 392–396.
van de Schootbrugge B. and Wignall P.B. 2016. A tale of two extinctions: converging end-Permian and end-Triassic scenarios. Geological Magazine, 153(2): 332–354.
Vernadsky V. 2002. La biosphère (1926). Naych. Chim. Izdat, 146.
Volk, T., and Hoffert, M.I. 1985. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In The carbon cycle and atmospheric CO2: Natural variations Archean to the Present. Edited by E.T.S. Sundquist, and W.E. Broecker. pp. 504–530.
Weissert, H. 1979. Die Palaeoozeanographie der Sudwestlichen Tethys in der Unterkreide. Mitt, Geol. Inst. ETH Univ. Zurich, neue Folge, 226.
Weissert H. 1989. C-isotope stratigraphy, a monitor of paleoenvironmental change: a case study from the Early Cretaceous. Surveys in Geophysics, 10: 1–61.
Weissert H. 2011. Mesozoic pelagic sediments: archives for ocean and climate history during greenhouse conditions. Developments in Sedimentology, 63: 765–792.
Weissert H., McKenzie J.A., and Hochuli P. 1979. Cyclic anoxic events in the Early Cretaceous Tethys Ocean. Geology, 7: 147–151.
Weissert H., Lini A., Föllmi K.B., and Kuhn O. 1998. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: a possible link? Palaeogeography, Palaeoclimatology, Palaeoecology, 137: 189–203.
Whiteside J.H., Olsen P.E., Eglinton T., Brookfield M.E., and Sambrotto R.N. 2010. Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proceedings of the National Academy of Sciences, 107(15): 6721–6725.
Wissler L., Funk H., and Weissert H. 2003. Response of Early Cretaceous carbonate platforms to changes in atmospheric carbon dioxide levels. Palaeogeography Palaeoclimatology Palaeoecology, 200(1–4): 187–205.
Yacobucci, M.M. 2015. Macroevolution and paleobiogeography of Jurassic-Cretaceous ammonoids. In Ammonoid Paleobiology: From macroevolution to paleogeography. Springer, pp. 189–228.
Zachos J.C., Röhl U., Schellenberg S.A., Sluijs A., Hodell D.A., Kelly D.C., et al. 2005. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science, 308: 1611–1615.
Zachos J.C., Dickens G.R., and Zeebe R.E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451: 279–283.
Zeebe R.E. and Westbroek P. 2003. A simple model for the CaCO3 saturation state of the ocean: The “Strangelove,” the “Neritan,” and the “Cretan” Ocean. Geochemistry, Geophysics, Geosystems, 4(12).

Information & Authors

Information

Published In

cover image Canadian Journal of Earth Sciences
Canadian Journal of Earth Sciences
Volume 56Number 12December 2019
Pages: 1366 - 1374

History

Received: 15 September 2018
Accepted: 11 January 2019
Accepted manuscript online: 15 January 2019
Version of record online: 15 January 2019

Notes

This paper is part of a Special issue entitled “Understanding tectonic processes and their consequences: a tribute to A.M. Celâl Şengör”.

Permissions

Request permissions for this article.

Key Words

  1. paleoceanography
  2. biosphere
  3. mass extinctions
  4. carbon cycle
  5. Mesozoic

Mots-clés

  1. paléoocéanographie
  2. biosphère
  3. extinctions massives
  4. cycle du carbone
  5. Mésozoïque

Authors

Affiliations

Helmut Weissert [email protected]
Department of Earth Sciences, ETH Zürich, CH-8092 Zürich, Switzerland.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.
Paper handled by Ali Polat.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. The resilience of Tethyan planktonic and benthic calcifying algae to Early Cretaceous perturbations: comparison between the Valanginian Weissert Event and the Early Aptian Oceanic Anoxic Event 1a
2. Continental flood basalts drive Phanerozoic extinctions
3. High‐Resolution C‐Isotope, TOC and Biostratigraphic Records of OAE 1a (Aptian) From an Expanded Hemipelagic Cored Succession, Western Tethys: A New Stratigraphic Reference for Global Correlation and Paleoenvironmental Reconstruction
4. Regime Shifts in an Early Triassic Subtropical Ecosystem
5. A volcanic scenario for the Frasnian–Famennian major biotic crisis and other Late Devonian global changes: More answers than questions?
6. Ali Mehmet Celâl Şengör: A geologist who unravels the histories of continents and oceans

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Earth Sciences

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media