Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Excitation–contraction coupling properties in women with work-related myalgia: a preliminary study

Publication: Canadian Journal of Physiology and Pharmacology
28 April 2014

Abstract

We investigated the potential role of selected excitation–contraction coupling processes in females with work-related myalgia (WRM) by comparing WRM with healthy controls (CON) using tissue from extensor carpi radialis brevis (ECRB) and trapezius (TRAP) muscles. For the ECRB, age (mean ± SE) was 29.6 ± 3.5 years for CON (n = 9) and 39.2 ± 2.8 years for WRM (n = 13), while for the TRAP, the values were 26.0 ± 2.1 years for CON (n = 7) and 44.6 ± 2.9 years for WRM (n = 11). For the sarcoplasmic reticulum (SR) of the ECRB, WRM displayed concentrations (nmol·(mg protein)−1·min−1) that were lower (P < 0.05) for Total (202 ± 4.4 vs 178 ± 7.1), Basal (34 ± 1.6 vs 30.1 ± 1.3), and maximal Ca2+-ATPase activity (Vmax, 168 ± 4.9 vs 149 ± 6.3), and Ca2+-uptake (5.06 ± 0.31 vs 4.13 ± 0.29), but not SERCA1a and SERCA2a isoforms, by comparison with CON. When age was incorporated as a co-variant, Total, Basal, and Ca2+-uptake remained different from CON (P < 0.05), but not Vmax (P = 0.13). For TRAP, none of the ATPase properties differed between groups (P > 0.05) either before or following adjustment for age. No differences (P > 0.05) were observed between the groups for Ca2+-release in the SR for either TRAP or ECRB. Similarly, no deficiencies, regardless of muscle, were noted for either the Na+–K+-ATPase content or the α and β subunit isoform distribution in WRM. This preliminary study provides a basis for further research, with expanded numbers, investigating the hypothesis that abnormalities in SR Ca2+-regulation are involved in the cellular etiology of WRM.

Résumé

Les auteurs ont examiné le rôle potentiel de processus de couplage excitation–contraction sélectionnés, chez des femmes souffrant de myalgie professionnelle (MP), en les comparant à des contrôles sains (CON), en utilisant des biopsies du muscle court extenseur radial du carpe (MCERC) et du trapèze (TRAP). L’âge des participantes à l’étude du MCERC (moyenne ± SE) était de 29,6 ± 3,5 ans et de 39,2 ± 2,8 ans pour les CON (n = 9) et les MP (n = 13), respectivement, alors que les participantes à l’étude du TRAP étaient âgées de 26,0 ± 2,1 ans et de 44,6 ± 2,9 ans pour les CON (n = 7) et MP (n = 11). Dans le réticulum sarcoplasmique (SR) (MCERC), les sujets avec MP présentaient des concentrations (nmol·(mg protéine)−1·min−1) qui étaient plus faibles (P < 0,05) sur le plan de l’activité totale (202 ± 4,4 vs 178 ± 7,1), basale (34 ± 1,6 vs 30,1 ± 1,3) et maximale de la Ca2+-ATPase (Vmax, 168 ± 4,9 vs 149 ± 6,3) et de la captation de Ca2+ (5,06 ± 0,31 vs 4,13 ± 0,29), mais pas en ce qui concerne les isoformes SERCA1a et SERCA2a, comparativement aux contrôles. Lorsque l’âge était considéré comme co-variable, l’activité totale et basale et la captation de Ca2+ demeuraient différentes des CON (P < 0,05), contrairement au Vmax (P = 0,13). En ce qui concerne le TRAP, les propriétés des ATPases ne différaient pas en fonction des groupes (P > 0,05), avant ou après l’ajustement en fonction de l’âge. Aucune différence (P > 0,05) n’était observée entre les groupes sur le plan de la libération de Ca2+ du SR du TRAP ou du MCERC. De la même façon, aucun déficit n’était noté sur le plan du contenu en Na+–K+-ATPase ou de la distribution des isoformes des sous-unités α et β chez les sujets avec MP, quel que soit le muscle. Cette étude préliminaire jette la base d’une recherche future avec un plus grand nombre de sujets, permettant de vérifier l’hypothèse que des anomalies de la régulation du Ca2+ dans le SR sont impliquées dans l’étiologie cellulaire de la MP. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Allen D.G. 2009. Fatigue in working muscles. J. Appl. Physiol. 106: 358–359.
Andersen L.L., Suetta C., Andersen J.L., Kjaer M., and Sjøgaard G. 2008. Increased proportion of megafibers in chronically painful muscles. Pain, 139: 588–593.
Andersson D.C., Betzenhauser M.J., Reiken S., Meli A.C., Umanskaya A., Xie W., et al. 2011. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 14: 196–207.
Bellinger A.M., Mongillo M., and Marks A.R. 2008. Stressed out: the skeletal muscle ryanodine receptor as a target of stress. J. Clin. Invest. 118: 445–453.
Benders A.A.G.M., Veerkamp J.H., Oosterhot A., Jonger P.J.H., Bindels R.J.M., Schmidt L.M.E., et al. 1994. Ca2+ homeostasis in Brody’s disease: a study in skeletal muscle and cultured muscle cells and the effects of dentrolene and verapamil. J. Clin. Invest. 94: 741–748.
Berchtold M.W., Brinkmeier H., and Müntener M. 2000. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity and disease. Physiol. Rev. 80: 1216–1265.
Bergström J. and Hultman E. 1967. A study of the glycogen metabolism during exercise in man. Scand. J. Clin. Lab. Invest. 19: 218–228.
Bossuyt J., Despa S., Han F., Hou Z., Robia S.L., Lingrel J.B., et al. 2009. Isoform specificity of the Na/K-ATPase association and regulation by phospholemman. J. Biol. Chem. 284: 26749–26757.
Brini M. and Carafoli E. 2009. Calcium pumps in health and disease. Physiol. Rev. 89: 1341–1378.
Chong Y.Y. and Ng B.Y. 2009. Clinical aspects of fibromyalgia syndrome. Ann. Acad. Med. Singapore, 38: 967–973.
Clausen T. 2008. Role of Na+, K+-pumps and transmembrane Na+–K+-distribution in muscle function. Acta Physiol. 192: 339–349.
Cote J.N. 2012. A critical review on physical factors and functional characteristics that may explain a sex/gender difference in work-related neck/shoulder disorders. Ergonomics, 55: 173–182.
Delbono, O. 2011. Excitation–contraction coupling regulation in ageing human muscle. In Sarcopenia — age related muscle wasting and weakness. Mechanisms and treatment. Edited by G.S. Lynch. Springer. pp. 113–134.
DeLuca C.J. 1985. Control properties of motor units. J. Exp. Biol. 115: 125–136.
Duhamel T.A., Green H.J., Sandiford S.D., Perco J.G., and Ouyang J. 2004. Effects of progressive exercise and hypoxia on human muscle sarcoplasmic reticulum function. J. Appl. Physiol. 97: 188–196.
Duhamel T.A., Green H.J., Perco J.G., and Ouyang J. 2006. Comparative effects of a low-carbohydrate diet and exercise plus a low-carbohydrate diet on muscle sarcoplasmic reticulum responses in males. Am. J. Physiol. Cell Physiol. 291: C607–C617.
Essén-Gustavsson B. and Borges O. 1986. Histochemical and metabolic characteristics of human skeletal muscle in relation to age. Acta Physiol. Scand. 126: 107–114.
Ferreira L.F. and Reid M.B. 2008. Muscle-derived ROS and thiol regulation in muscle fatigue. J. Appl. Physiol. 104: 853–860.
Gissel H. 2000. Ca2+ accumulation and cell damage in skeletal muscle during low frequency stimulation. Eur. J. Appl. Physiol. 83: 175–180.
Green H.J., Ballantyne C.S., MacDougall J.D., Tarnopolsky M.A., and Schertzer J.D. 2003. Adaptations in human muscle sarcoplasmic reticulum to prolonged submaximal training. J. Appl. Physiol. 94: 2034–2042.
Green H.J., Duhamel T.A., Stewart R.D., Tupling A.R., and Ouyang J. 2008. Dissociation between changes in muscle Na+–K+-ATPase isoform abundance and activity with consecutive days of exercise and recovery. Am. J. Physiol. 294: E761–E767.
Green H.J., Burnett M., D’Arsigny C., O’Donnell D.E., McBride I., Ouyang J., et al. 2009. Vastus lateralis Na+–K+-ATPase activity, protein, and isoform distribution in chronic obstructive pulmonary disease. Muscle Nerve, 40: 62–68.
Green H.J., Burnett M., Kollias H., Ouyang J., Smith I., and Tupling S. 2011a. Malleability of human muscle sarcoplasmic reticulum to short-term training. Appl. Physiol. Nutr. Metab. 36(6): 904–912.
Green H.J., Duhamel T.A., Smith I., Rich S.M., Thomas M.M., Ouyang J., et al. 2011b. Muscle fatigue and excitation–contraction coupling responses following a session of prolonged cycling. Acta Physiol. 203: 441–455.
Green H.J., Galvin P., Ranney D.A., Tick H., and Ouyang J. 2011c. Are abnormalities in sarcoplasmic reticulum calcium cycling properties involved in trapezius myalgia? Am. J. Phys. Med. Rehabil. 90: 834–843.
Green H.J., Ranney D., Burnett M., Galvin P., Kyle N., Iqbal S., et al. 2014. A pilot study to determine whether differences exist in histochemical properties between the trapezius and extensor carpi radialis brevis muscles in women with work-related myalgia. Can. J. Physiol. Pharmacol. 92(4): 315–323.
Hagg C.M. 2000. Human muscle fibre abnormalities related to occupational load. Eur. J. Appl. Physiol. 83: 159–165.
Henneman E. 1985. The size principal. A deterministic output emerges from a set of probabilistic connections. J. Exp. Biol. 115: 103–112.
Hermann-Frank A., Richter M., Sarközi U., Mohr U., and Lehmann-Horn F. 1996. 4-Chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor. Biochim. Biophys. Acta, 1289: 31–40.
Jahan F., Nanji K., Qidwai W., and Qasim R. 2012. Fibromyalgia syndrome: An overview of pathophysiology, diagnosis and management. Oman Med. J. 27: 192–195.
Juel C. 2006. Training-induced changes in membrane transport proteins of human skeletal muscle. Eur. J. Appl. Physiol. 96: 627–635.
Kadi F., Waling K., Ahlgren C., Sundelin G., Holmner S., Butler-Browne G.S., et al. 1998. Pathological mechanisms implicated in localized female trapezius myalgia. Pain, 78: 191–196.
Karpate G., Charuk J., Carpenter S., Jablecki C., and Holland P. 1986. Myopathy caused by a deficiency of Ca2+-adenosine triphosphatase in sarcoplasmic reticulum (Brody’s disease). Ann. Neurol. 20: 38–49.
Klebl B.M., Ayoub T.A., and Pette D. 1998. Protein oxidation, tyrosine nitration, and inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rabbit muscle. FEBS Lett. 422: 381–384.
Lamb G.D. 2009. Mechanisms of excitation–contraction coupling relevant to activity-induced muscle fatigue. Appl. Physiol. Nutr. Metab. 34(3): 368–372.
Larsson B.J., Bjork J., Henriksson K.G., Gerdle B., and Lindeman R. 2000. The prevalences of cytochrome c oxidative negative and superpositive fibres and ragged red fibres in trapezius muscle of female cleaners with and without myalgia and of female healthy controls. Pain, 84(2–3): 379–387.
Larsson B., Bjork J., and Kadi F. 2004. Blood supply and oxidative metabolism in muscle biopsies of female cleaners with and without myalgia. Clin. J. Pain, 20: 440–446.
Larsson B., Søgaard K., and Rosendal L. 2007. Work-related neck-shoulder pain: a review on magnitude, risk factors, biochemical characteristics, clinical picture and preventative interventions. Best Pract. Res. Clin. Rheumatol. 21: 447–463.
Larsson B., Björk J., Börsbo B., and Gerdle B. 2012. A systematic review of risk factors associated with transitioning from regional musculoskeletal pain to chronic widespread pain. Eur. J. Pain, 16(8): 1084–1093.
Lindman R., Hayberg M., Angguist K.A., Soderlund K., Hultman E., and Thornell L.E. 1991. Changes in muscle morphology in chronic trapezius myalgia. Scand. J. Work Environ. Health, 17: 347–355.
Livingston B.P., Segal R.L., Song A., Hopkins K., English A.W., and Manning C.C. 2001. Functional activation of the extensor carpi radialis muscles in humans. Arch. Phys. Med. Rehabil. 82: 1164–1170.
MacLennan D.H. 2000. Ca+ signalling and muscle disease. Eur. J. Biochem. 267: S291–S297.
Matsunaga S., Harmon S., Gohlsch B., Ohlendieck K., and Pette D. 2001. Inactivation of sarcoplasmic reticulum Ca2+-ATPase in low-frequency stimulated rat muscle. J. Muscle Res. Cell Motil. 22: 685–691.
McKenna M.J., Bangsbo J., and Renaud J.M. 2008. Muscle K+, Na+, and Cl disturbances and Na+–K+ pump inactivation: implications for fatigue. J. Appl. Physiol. 104: 288–295.
Nørgaard A., Kjeldsen K., Hansen O., and Clausen T. 1983. A simple and rapid method for the determination of the number of 3H-ouabain binding sites in biopsies of skeletal muscle. Biochem. Biophys. Res. Commun. 111: 319–325.
Ohlendieck K. 2000. Changes in Ca2+-regulatory muscle membrane proteins during the chronic low-frequency stimulation induced fast-to-slow transition process. Basic Appl. Myol. 10: 99–106.
Ranney D., Wells R., and Moore A. 1995. Upper limb musculoskeletal disorders in highly repetitive industries: precise anatomical physical findings. Ergonomics, 38(7): 1408–1423.
Rayavarapu S., Coley W., and Nagaraju K. 2012. Endoplasmic reticulum stress in skeletal muscle homeostasis and disease. Curr. Rheumatol. Rep. 14: 238–243.
Raymer G., Green H.J., Ranney D., Marsh G.D., and Thompson R.T. 2009. Muscle metabolism and acid–base status during exercise in forearm work-related myalgia measured with 31 P-MRS. J. Appl. Physiol. 106: 1198–1206.
Rosendal L., Kristiansen J., Gerdle B., Søgaard K., Peolsson M., Kjaer M., et al. 2005. Increased levels of interstitial potassium but normal levels of muscle IL-6 and LDH in patients with trapezius myalgia. Pain, 119: 201–209.
Seidler N.W., Jona I., Vegh M., and Martonosi A. 1989. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J. Biol. Chem. 264: 17816–17823.
Simonides W.S. and van Hardeveld C. 1990. An assay for sarcoplasmic reticulum Ca2+-ATPase activity in muscle homogenates. Anal. Biochem. 191: 321–331.
Stutzman G.E. and Mattson M.P. 2011. Endoplasmic reticulum Ca2+ handling in excitable cells in health and disease. Pharmacol. Rev. 63: 700–727.
Trinh H.H. and Lamb G.D. 2006. Matching of sarcoplasmic reticulum and contractile properties in rat fast-twitch and slow-twitch muscle fibres. Clin. Exp. Pharmacol. Physiol. 33: 591–600.
Tupling R. and Green H.J. 2002. Silver ions induce Ca2+ release from the SR in vitro by acting on both the Ca2+ release channel and the Ca2+ pump. J. Appl. Physiol. 92: 1603–1610.
Viner R.I., Ferrington D.A., Williams T.D., Bigelow D.J., and Schöneich C. 1999. Protein modification during biological aging: selective tyrosine nitration of the SERCA2a isoform of the sarcoplasmic reticulum Ca2+-ATPase in skeletal muscle. Biochem. J. 340: 657–669.
Visser B. and van Dieën J.H. 2006. Pathophysiology of upper extremity muscle disorders. J. Electromyogr. Kinesiol. 16: 1–16.
Westgaard R.H., Mork P.J., Loras H.W., Riva R., and Lundberg U. 2013. Trapezius activity of fibromyalgia patients is enhanced in stressful situations, but is similar to healthy controls in a quiet naturalistic setting: a case-control study. BMC Musculoskelet. Disord. 14: 97.
WMA (World Medical Association). 2000. Declaration of Helsinki: ethical principles for medical research involving human subjects. As amended by the 52nd WMA General Assembly, Edinburgh, Scotland, October 2000. [http://www.wma.net/en/30publications/10policies/b3/].
Wolfe F. 1996. The fibromyalgia syndrome: a consensus report on fibromyalgia and disability. J. Rheumatol. 23: 534–539.
Wu K.-D. and Lytton J. 1993. Molecular cloning and quantification of sarcoplasmic reticulum Ca2+-ATPase isoforms in rat muscles. Am. J. Physiol. 204: C333–C341.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 92Number 6June 2014
Pages: 498 - 506

History

Received: 19 February 2014
Accepted: 23 April 2014
Accepted manuscript online: 28 April 2014
Version of record online: 28 April 2014

Permissions

Request permissions for this article.

Key Words

  1. myalgia
  2. work
  3. sarcoplasmic reticulum
  4. calcium regulation
  5. trapezius
  6. extensor carpi radialis brevis
  7. excitation–contraction coupling

Mots-clés

  1. myalgie
  2. travail
  3. réticulum sarcoplasmique
  4. régulation du calcium
  5. trapèze
  6. muscle court extenseur radial du carpe
  7. couplage excitation–contraction

Authors

Affiliations

Howard J. Green
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Centre of Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
Don Ranney
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Centre of Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
Disability Assessment Services, Inc., RR#1 Arthur, Waterloo, ON N0G 1A0, Canada.
Margaret Burnett
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Patti Galvin
Wellington Orthopaedic and Rehabilitation Centre, 86 Dawson Road, Unit 3, Guelph, ON N1H 1A8, Canada.
Natasha Kyle
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
David Lounsbury
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Jing Ouyang
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Ian C. Smith
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Riley Stewart
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Heather Tick
Mind-Body Medicine, The RSI Clinic, 79 St. Clair Avenue East, Toronto, ON M4T 1M6, Canada.
Departments of Family Medicine and Anaesthesiology & Pain Medicine, University of Washington, 1959 NE Pacific Street, BB-1469, Seattle, WA 98195-6540, USA.
A. Russell Tupling
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Centre of Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Faculty of Applied Health Sciences, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Inorganic nitrate supplementation and blood flow restricted exercise tolerance in post-menopausal women
2. Calcium Fluxes in Work-Related Muscle Disorder: Implications from a Rat Model
3. Morphological and physiological differences in the upper trapezius muscle in patients with work-related trapezius myalgia compared to healthy controls: A systematic review
4. Neuromuscular manifestations of work-related myalgia in women specific to extensor carpi radialis brevis
5. Cellular properties of extensor carpi radialis brevis and trapezius muscles in healthy males and females
6. Preliminary observations on high energy phosphates and metabolic pathway and transporter potentials in extensor carpi radialis brevis and trapezius muscles of women with work-related myalgia

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media