Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Cellular properties of extensor carpi radialis brevis and trapezius muscles in healthy males and females

Publication: Canadian Journal of Physiology and Pharmacology
6 May 2015

Abstract

In this study, we sought to determine whether differences in cellular properties associated with energy homeostasis could explain the higher incidence of work-related myalgia in trapezius (TRAP) compared with extensor carpi radialis brevis (ECRB). Tissue samples were obtained from the ECRB (n = 19) and TRAP (n = 17) of healthy males and females (age 27.9 ± 2.2 and 28.1 ± 1.5 years, respectively; mean ± SE) and analyzed for properties involved in both ATP supply and utilization. The concentration of ATP and the maximal activities of creatine phosphokinase, phosphorylase, and phosphofructokinase were higher (P < 0.05) in ECRB than TRAP. Succinic dehydrogenase, citrate synthase, and cytochrome c oxidase were not different between muscles. The ECRB also displayed a higher concentration of Na+–K+-ATPase and greater sarcoplasmic reticulum Ca2+ release and uptake. No differences existed between muscles for either monocarboxylate transporters or glucose transporters. It is concluded that the potentials for high-energy phosphate transfer, glycogenolysis, glycolysis, and excitation–contraction coupling are higher in ECRB than TRAP. Histochemical measurements indicated that the muscle differences are, in part, related to differing amounts of type II tissue. Depending on the task demands, the TRAP may experience a greater metabolic and excitation–contraction coupling strain than the ECRB given the differences observed.

Résumé

Cette étude avait pour objectif de déterminer si des propriétés dissemblables de l’homéostasie cellulaire pourraient expliquer l’augmentation de la fréquence de myalgies associées à l’effort dans l’extenseur radial du carpe (ERC) comparativement au trapèze (TPZ). Nous avons étudié les propriétés liées à l’approvisionnement en ATP et à son utilisation dans des échantillons de tissu d’ERC (n = 19) et de TPZ (n = 17) prélevés chez des hommes et des femmes en bonne santé (âgés de 27,9 ± 2,2 et de 28,1 ± 1,5 ans [moyenne ± ÉT], respectivement). La concentration d’ATP et les activités maximales de la créatine phosphokinase, de la phosphorylase et de la phosphofructokinase étaient plus élevées (P < 0,05) dans l’ERC que dans le TPZ, alors que celles de la déshydrogénase succinique, de la citrate synthase et de la cytochrome c oxydase étaient semblables dans les deux types de muscle. En outre, les concentrations de Na+–K+-ATPase ainsi que les taux de libération et de recapture de l’ion Ca2+ étaient plus élevés dans le réticulum sarcoplasmique de l’ERC que dans celui du TPZ, alors que les caractéristiques des transporteurs de monocarboxylates et des transporteurs du glucose étaient semblables dans les deux types de muscle. Nous en arrivons à la conclusion que les potentiels de transfert de phosphates riches en énergie, de glycogénolyse, de glycolyse et de couplage excitation–contraction sont plus élevés dans l’ERC que dans le TPZ. Les mesures histochimiques indiquent que ces différences entre les 2 types de muscle sont, en partie, liées aux disparités entre les quantités de tissu de type II. Étant donné les différences observées, des contraintes plus importantes pourraient être imposées au TPZ qu’à l’ERC sur le plan métabolique et du couplage excitation–contraction selon les exigences des tâches. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Allen D.G. 2009. Fatigue in working muscles. J. Appl. Physiol. 106: 358–359.
Allen D.G., Lamb G.D., and Westerblad H. 2008. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88: 287–332.
Andersen L.L., Suetta C., Andersen J.L., Kjaer M., and Sjøgaard G. 2008. Increased proportion of megafibers in chronically painful muscles. Pain, 139: 588–593.
Berchtold M.W., Brinkmeier H., and Müntener M. 2000. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity and disease. Physiol. Rev. 80: 1215–1265.
Bergström J. 1962. Muscle electrolytes in man. Scand. J. Clin. Lab. Invest. Suppl. 68: 1–110.
Bossuyt J., Despa S., Han F., Hou Z., Robia S.L., Lingrel J.B., et al. 2009. Isoform specificity of the Na/K-ATPase association and regulation by phospholemman. J. Biol. Chem. 284: 26749–26757.
Bottinelli R. and Reggiani C. 2000. Human skeletal muscle fibres: molecular and functional diversity. Prog. Biophys. Mol. Biol. 73: 195–262.
Bottinelli R., Pellegrino M.A., Canepari M., Rossi R., and Reggiani C. 1999. Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J. Electromyogr. Kinesiol. 9: 87–95.
Brini M. and Carafoli E. 2009. Calcium pumps in health and disease. Physiol. Rev. 89: 1341–1378.
Clausen T. 2003. Na+-K+ pump regulation and skeletal muscle contractility. Physiol. Rev. 83: 1269–1324.
Clausen T. 2008. Role of Na+, K+-pumps and transmembrane Na+–K+-distribution in muscle function. Acta Physiol. 192: 339–349.
Connett R.J., Honig C.R., Gayeski T.E.J., and Brooks G.A. 1990. Defining hypoxia: a systems view of VO2, glycolysis, energetics and intracellular PO2. J. Appl. Physiol. 68: 833–842.
Cote J.N. 2012. A critical review on physical factors and functional characteristics that may explain a sex/gender difference in work-related neck/shoulder disorders. Ergonomics, 55: 173–182.
Curran-Everett D. 2000. Multiple comparisons: philosophies and illustrations. Am. J. Physiol. 279: R1–R8.
Egginton S. 2009. Invited review: activity-induced angiogenesis. Pflugers Arch. 457: 963–977.
Elcadi G.H., Forsman M., Hallman D.M., Aasa U., Fahlstrom M., and Crenshaw A.G. 2014. Oxygenation and hemodynamics do not underlie early muscle fatigue for patients with work-related muscle pain. PLoS One, 9(4): 95582.
Gandevia S.C. 2001. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 81: 1725–1789.
Gerdle, B., and Larsson, B. 2012. Potential muscle biomarkers of chronic myalgia in humans: A systematic review of microdialysis studies. In Biomarkers. pp. 103–132.
Green, H.J. 2012. Skeletal muscle adaptation to regular physical activity. In Physical activity and health. Edited by C. Bouchard, S.N. Blair, and W. Haskell. Human Kinetics, Ill. pp. 121–148.
Green H.J., Fraser I.G., and Ranney D.A. 1984. Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. J. Neurol. Sci. 65: 323–331.
Green H., Goreham C., Ouyang J., Ball-Burnett M., and Ranney D. 1998. Regulation of fiber size, oxidative potential and capillarization in human muscle by resistance exercise. Am. J. Physiol. 276: 591–596.
Green H.J., Bombardier E., D’Arsigny C., O’Donnell D., and Ouyang J. 2008. Organization of metabolic pathways on skeletal muscle of patients with chronic obstructive lung disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295: R935–R941.
Green H.J., Burnett M., D’Arsigny C., O’Donnell D.E., McBride I., Ouyang J., et al. 2009. Vastus lateralis Na+–K+-ATPase activity, protein, and isoform distribution in chronic obstructive pulmonary disease. Muscle Nerve, 40: 62–68.
Green H.J., Duhamel T.A., Smith I.C., Rich S.M., Thomas M.M., Ouyang J., et al. 2011. Muscle metabolic, enzymatic and transporter responses to a session of prolonged exercise. Eur. J. Appl. Physiol. 111: 827–837.
Green H.J., Ranney D., Burnett M., Galvin P., Kyle N., Iqbal S., et al. 2014a. A pilot study to determine if differences exist in histochemical properties between trapezius and extensor carpi radialis brevis muscles in women with work-related myalgia. Can. J. Physiol. Pharmacol. 92: 315–323.
Green H.J., Ranney D., Burnett M., Galvin P., Kyle N., Lounsbury D., et al. 2014b. Excitation–contraction coupling properties in women with work-related myalgia: A preliminary study. Can. J. Physiol. Pharmacol. 92(6): 498–506.
Green H.J., Ranney D., Burnett M., Galvin P., Kyle N., Lounsbury D., et al. 2014c. Preliminary observations on high energy phosphates and metabolic pathway and transporter potentials in extensor carpi radialis brevis and trapezius muscles of women with work-related myalgia. Can. J. Physiol. Pharmacol. 92(11): 953–960.
Hadrevi J., Hellstrom F., Kieselbach T., Malm C., and Pedrosa-Dommelöf F. 2011. Protein differences between human trapezius and vastus lateralis muscles determined with a proteomic approach. BMC Musculoskelet. Disord. 12: 181.
Henneman E. 1985. The size principal. A deterministic output emerges from a set of probabilistic connections. J. Exp. Biol. 115: 103–112.
Henriksson J.M., Chi M.Y., Hintz C.S., Young D.A., Kaiser K.K., Salmons S., et al. 1986. Chronic stimulation of mammalian muscle: changes in enzymes of six metabolic pathways. Am. J. Physiol. 251: C614–C632.
Hochachka, P.W. 1994. Muscles as molecular and metabolic machines. CRC Press Inc., Boca Raton, Fla.
Juel C. 2006. Training-induced changes in membrane transport proteins of human skeletal muscle. Eur. J. Appl. Physiol. 96: 627–635.
Juel C. 2009. Na+–K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity. Am. J. Physiol. 296: R125–R132.
Larsson B., Björk J., Elert J., Lindman R., and Gerdle B. 2001. Fibre type proportion and fibre size in trapezius muscle biopsies from cleaners with and without myalgia and its correlation with ragged red fibres, cytochrome-c-oxidase negative fibres, biomechanical output, perception of fatigue and surface electromyography during repetitive forward flexions. Eur. J. Appl. Physiol. 84: 492–502.
Larsson B., Bjork J., and Kadi F. 2004. Blood supply and oxidative metabolism in muscle biopsies of female cleaners with and without myalgia. Clin. J. Pain, 20: 440–446.
Larsson B., Søgaard K., and Rosendal L. 2007. Work-related neck-shoulder pain: a review on magnitude, risk factors, biochemical characteristics, clinical picture and preventative interventions. Best Pract. Res. Clin. Rheumatol. 21: 447–463.
Larsson S.E., Bodegård L., Henriksson K.G., and Öberg P.A. 1990. Chronic trapezius myalgia. Morphology and blood flow studied in 17 patients. Acta Orthop. Scand. 61: 394–398.
McKenna M.J. and Hargreaves M. 2008. J. Appl. Physiol. 104: 286–287.
McKenna M.J., Bangsbo J., and Renaud J.M. 2008. Muscle K+, Na+, and Cl disturbances and Na+–K+ pump inactivation: implications for fatigue. J. Appl. Physiol. 104: 288–295.
Meyer, R.A., and Foley, J.M. 1996. Cellular processes integrating the metabolic response to exercise. In Handbook of Physiology. Exercise: Regulation and Integration of Multiple Systems. Edited by L. Rowell and J. Shephard. Oxford University Press, N.Y. pp. 841–869.
Nørgaard A., Kjeldsen K., and Clausen T. 1984. A method for the determination of the total number of 3H-ouabain binding sites in biopsies of human skeletal muscle. Scand. J. Clin. Lab. Invest. 44: 509–518.
Parsons D.B., McIntyre K., Schulz W., and Stray-Gunderson J. 1993. Capillarity of elite cross-country skiers. a lectin (Ulex europeaus I) marker. Scand. J. Med. Sci. Sports, 3: 207–216.
Pette D. and Dölken G. 1975. Some aspects of regulation of enzyme levels in muscle energy-supplying metabolism. Adv. Enzyme Regul. 13: 355–378.
Powers S.K., Nelson W.B., and Hudson M.B. 2010. Exercise-induced oxidative stress in humans. Cause and consequences. Free Radic. Biol. Med. 51: 942–950.
Ranney D. 1993. Work related chronic injuries of the forearm and hand: their specific diagnosis and management. Ergonomics, 36: 871–880.
Ranney D., Wells R., and Moore A. 1995. Upper limb musculoskeletal disorders in highly repetitive industries: precise anatomical physical findings. Ergonomics, 38(7): 1408–1423.
Raymer G., Green H.J., Ranney D., Marsh G.D., and Thompson R.T. 2009. Muscle metabolism and acid–base status during exercise in forearm work-related myalgia measured with 31 P-MRS. J. Appl. Physiol. 106: 1198–1206.
Richter E.A. and Hargreaves M. 2013. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol. Rev. 93: 993–1017.
Rush, J.W.E., Woodman, C.R., Aaker, A.P., Schrage, W.G., and Laughlin, H.M. 2001. Skeletal muscle blood flow and endurance exercise: Limiting factors and dynamic responses. In Endurance in Sport. Edited by R.J. Shephard and P.O. Astrand. Blackwell Science Ltd., London, UK. pp. 84–102.
Saltin, B., and Gollnick, P.D. 1983. Skeletal muscle adaptability: significance for metabolism and performance. In Handbook of Physiology. Skeletal Muscle. Edited by L.D. Peachy, R.H. Adrian, and S.R. Geiger. Williams and Wilkins, Baltimore, Md. pp. 551–631.
Simoneau J.A. and Bouchard C. 1989. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am. J. Physiol. 257: E567–E572.
Simoneau J.A., Lortie G., Boulay M.R., Marcotte M., Thibault M.C., and Bouchard C. 1985. Human skeletal muscle fibre type alteration with high-intensity intermittent training. Eur. J. Appl. Physiol. 54: 250–253.
Simonides W.S. and van Hardeveld C. 1990. An assay for sarcoplasmic reticulum Ca2+-ATPase activity in muscle homogenates. Anal. Biochem. 191:321–331.
Sjøgaard G., Rosendal L., Kristiansen J., Blangsted A.K., Skotte J., Larsson B., et al. 2010. Muscle oxygenation and glycolysis in females with trapezius myalgia during stress and repetitive work using microdialysis. Eur. J. Appl. Physiol. 108: 657–669.
Staron R.S. 1997. Human skeletal muscle fibre types: Delineation, development and distribution. Can. J. Appl. Physiol. 22:307–327.
Trinh H.H. and Lamb G.D. 2006. Matching of sarcoplasmic reticulum and contractile properties in rat fast-twitch and slow-twitch muscle fibres. Clin. Exp. Pharmacol. Physiol. 33: 591–600.
Van Wessel T., de Haan A., Van Der Laarse W.J., and Jaspers R.T. 2010. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism. Eur. J. Appl. Physiol. 110: 665–694.
Visser B. and van Dieën J.H. 2006. Pathophysiology of upper extremity muscle disorders. J. Electromyogr. Kinesiol. 16: 1–16.
Westgaard R.H. and De Luca C.J. 1999. Motor unit substitution in long-duration contractions of the human trapezius muscle. J. Neurophysiol. 82: 501–504.
Wu K.-D. and Lytton J. 1993. Molecular cloning and quantification of sarcoplasmic reticulum Ca2+-ATPase isoforms in rat muscles. Am. J. Physiol. 204: C333–C341.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 93Number 11November 2015
Pages: 953 - 966

History

Received: 24 December 2014
Accepted: 31 March 2015
Accepted manuscript online: 6 May 2015
Version of record online: 6 May 2015

Permissions

Request permissions for this article.

Key Words

  1. excitation–contraction coupling
  2. fibre type distribution
  3. metabolic pathways
  4. substrates
  5. transporters

Mots-clés

  1. couplage excitation–contraction
  2. distribution des types de fibre
  3. voies métaboliques
  4. substrats
  5. transporteurs

Authors

Affiliations

Howard J. Green [email protected]
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Centre for Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Waterloo, Ontario, Canada.
Don Ranney
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Centre for Research Expertise for the Prevention of Musculoskeletal Disorders (CRE-MSD), Waterloo, Ontario, Canada.
Disability Assessment Services Inc., Waterloo, Ontario, Canada.
Margaret Burnett
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Sobia Iqbal
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Natasha Kyle
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
David Lounsbury
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Jing Ouyang
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
A. Russell Tupling
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Ian C. Smith
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Riley Stewart
Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Heather Tick
Mind Body Medicine, The RSI Clinic, Toronto, Ontario, Canada.
Departments of Family Medicine and Anaesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media