Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Factors affecting gray wolf (Canis lupus) encounter rate with elk (Cervus elaphus) in Yellowstone National Park

Publication: Canadian Journal of Zoology
14 May 2018

Abstract

Despite encounter rates being a key component of kill rate, few studies of large carnivore predation have quantified encounter rates with prey, the factors that influence them, and the relationship between encounter rate and kill rate. The study’s primary motivation was to determine the relationship between prey density and encounter rate in understanding the mechanism behind the functional response. Elk (Cervus elaphus Linnaeus, 1758) population decline and variable weather in northern Yellowstone National Park provided an opportunity to examine how these factors influenced wolf (Canis lupus Linnaeus, 1758) encounter rates with elk. We explored how factors associated with wolf kill rate and encounter rate in other systems (season, elk density, elk group density, average elk group size, snow depth, wolf pack size, and territory size) influenced wolf–elk encounter rate in Yellowstone National Park. Elk density was the only factor significantly correlated with wolf–elk encounter rate, and we found a nonlinear density-dependent relationship that may be a mechanism for a functional response in this system. Encounter rate was correlated with number of elk killed during early winter but not late winter. Weak effects of snow depth and elk group size on encounter rate suggest that these factors influence kill rate via hunting success because kill rate is the product of hunting success and encounter rate.

Résumé

Si la fréquence des rencontres est un élément clé du taux de prédation, peu d’études sur la prédation par de grands carnivores ont quantifié la fréquence des rencontres avec des proies, les facteurs qui l’influencent et la relation entre la fréquence des rencontres et le taux de prédation. La principale motivation de l’étude consistait à établir la relation entre la densité de proies et la fréquence des rencontres pour mieux comprendre le mécanisme qui sous-tend la réaction fonctionnelle. Le déclin de la population de wapitis (Cervus elaphus Linnaeus, 1758) et la météo variable dans le secteur nord du Parc national de Yellowstone offrent la possibilité d’examiner l’influence de ces facteurs sur la fréquence des rencontres de loups (Canis lupus Linnaeus, 1758) avec des wapitis. Nous avons examiné l’influence de facteurs associés au taux de prédation par des loups et à la fréquence des rencontres dans d’autres systèmes (saison, densité des wapitis, densité des groupes de wapitis, taille moyenne des groupes de wapitis, épaisseur de la neige, taille de la meute de loups et dimension du territoire) sur la fréquence des rencontres loup–wapiti dans le Parc national de Yellowstone. La densité des wapitis est le seul facteur qui présente une corrélation significative avec la fréquence des rencontres loup–wapiti, et nous avons noté une relation non linéaire dépendante de la densité qui pourrait constituer un mécanisme de réaction fonctionnelle dans ce système. La fréquence des rencontres est corrélée au nombre de wapitis tués au début de l’hiver mais non à la fin de l’hiver. De faibles effets de l’épaisseur de la neige et de la taille des groupes de wapitis sur la fréquence des rencontres semblent indiquer que ces facteurs influencent le taux de prédation par l’entremise du succès de la chasse étant donné que le taux de prédation est le produit du succès de la chasse et de la fréquence des rencontres. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Anderson D.P., Forester J.D., Turner M.G., Frair J.L., Merrill E.H., Fortin D., Mao J.S., and Boyce M.S. 2005. Factors influencing female home range sizes in elk (Cervus elaphus) in North American landscapes. Landsc. Ecol. 20(3): 257–271.
Biesinger Z. and Haefner J.W. 2005. Proximate cues for predator searching: a quantitative analysis of hunger and encounter rate in the ladybird beetle (Coccinella septempunctata). Anim. Behav. 69(1): 235–244.
Börger L., Franconi N., De Michele G., Gantz A., Meschi F., Manica A., Lovari S., and Coulson T. 2006. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75(6): 1393–1405.
Boyce M.S. 1991. Migratory behavior and management of elk (Cervus elaphus). Appl. Anim. Behav. Sci. 29(1–4): 239–250.
Brennan A., Cross P.C., and Creel S. 2015. Managing more than the mean: using quantile regression to identify factors related to large elk groups. J. Appl. Ecol. 52(6): 1656–1664.
Burkholder B.L. 1959. Movements and behavior of a wolf pack in Alaska. J. Wildl. Manage. 23(1): 1–11.
Calenge C. 2006. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol. Model. 197(3–4): 516–519.
Cassidy K.A., MacNulty D.R., Stahler D.R., Smith D.W., and Mech L.D. 2015. Group composition effects on aggressive interpack interactions of gray wolves in Yellowstone National Park. Behav. Ecol. 26(5): 1352–1360.
Ciucci P., Boitani L., Francisci F., and Andreoli G. 1997. Home range, activity and movements of a wolf pack in central Italy. J. Zool. (Lond.), 243(4): 803–819.
Cohen G.R. and Yang S. 1994. Mid-p confidence intervals for the Poisson expectation. Stat. Med. 13: 2189–2203.
Cook R.C., Cook J.G., and Mech L.D. 2004. Nutritional condition of northern Yellowstone elk. J. Mammal. 85(4): 714–722.
Cosner C., DeAngelis D.L., Ault J.S., and Olson D.B. 1999. Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56(1): 65–75.
Coughenour M.B. and Singer F.J. 1996. Elk population processes in Yellowstone National Park under the policy of natural regulation. Ecol. Appl. 6(2): 573–593.
Cubaynes S., MacNulty D.R., Stahler D.R., Quimby K.A., Smith D.W., and Coulson T. 2014. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus). J. Anim. Ecol. 83(6): 1344–1356.
Dale B.W., Adams L.G., and Bowyer R.T. 1994. Functional response of wolves preying on barren-ground caribou in a multiple-prey ecosystem. J. Anim. Ecol. 63(3): 644–652.
DelGiudice G.D., Singer F.J., and Seal U.S. 1991. Physiological assessment of winter nutritional deprivation in elk of Yellowstone National Park. J. Wildl. Manage. 55(4): 653–664.
Despain, D.G. 1990. Yellowstone vegetation: consequences of environment and history in a natural setting. Roberts Rinehart Publishers, Boulder, Colo.
Eriksen A., Wabakken P., Zimmermann B., Andreassen H.P., Arnemo J.M., Gundersen H., Milner J.M., Liberg O., Linnell J., Pedersen H.C., Sand H., Solberg E.J., and Storaas T. 2009. Encounter frequencies between GPS-collared wolves (Canis lupus) and moose (Alces alces) in a Scandinavian wolf territory. Ecol. Res. 24(3): 547–557.
Farnes, P.E., and Shafer, B. 1975. Summary of snow survey measurements for Montana, 1922–1974. Soil Conservation Service, Bozeman, Mont.
Fieberg J. and Börger L. 2012. Could you please phrase “home range” as a question? J. Mammal. 93(4): 890–902.
Fryxell J.M., Mosser A., Sinclair A.R., and Packer C. 2007. Group formation stabilizes predator–prey dynamics. Nature, 449(7165): 1041–1043.
Fuller, T.K., Mech, L.D., and Cochrane, J.F. 2003. Wolf population dynamics. In Wolves. Behavior, ecology, and conservation. Edited by L.D. Mech and L. Boitani. University of Chicago Press, Chicago, Ill.
Hassell M.P. and Varley G.C. 1969. New inductive population model for insect parasites and its bearing on biological control. Nature, 223(5211): 1133–1137.
Hayes R.D., Baer A.M., Wotschikowsky U., and Harestad A.S. 2000. Kill rate by wolves on moose in the Yukon. Can. J. Zool. 78(1): 49–59.
Hebblewhite M. and Pletscher D.H. 2002. Effects of elk group size on predation by wolves. Can. J. Zool. 80(5): 800–809.
Holling C.S. 1959. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can. Entomol. 91(5): 293–320.
Houston, D.G. 1982. The northern Yellowstone elk: ecology and management. Available from http://digitalcommons.usu.edu/aspen_bib/4316/ [accessed 15 January 2014].
Huggard D.J. 1993. Prey selectivity of wolves in Banff National Park. I. Prey species. Can. J. Zool. 71(1): 130–139.
Ioannou C.C., Ruxton G.D., and Krause J. 2008. Search rate, attack probability, and the relationship between prey density and prey encounter rate. Behav. Ecol. 19(4): 842–846.
Jedrzejewski W., Schmidt K., Theuerkauf J., Jedrzejewska B., and Okarma H. 2001. Daily movements and territory use by radio-collared wolves (Canis lupus) in Bialowieza Primeval Forest in Poland. Can. J. Zool. 79(11): 1993–2004.
Kauffman M.J., Varley N., Smith D.W., Stahler D.R., MacNulty D.R., and Boyce M.S. 2007. Landscape heterogeneity shapes predation in a newly restored predator–prey system. Ecol. Lett. 10(8): 690–700.
Kery, M. 2010. Introduction to WinBUGS for ecologists: Bayesian approach to regression, ANOVA, mixed models and related analyses. Academic Press.
Kittle A.M., Anderson M., Avgar T., Baker J.A., Brown G.S., Hagens J., Iwachewski E., Moffatt S., Mosser A., Patterson B.R., et al. 2015. Wolves adapt territory size, not pack size to local habitat quality. J. Anim. Ecol. 84(5): 1177–1186.
Knight R.R. 1970. The Sun River elk herd. Wildl. Monogr. 23: 3–66.
Kohl M.T., Stahler D.R., Metz M.C., Forester J.D., Kauffman M.J., Varley N., White P.J., Smith D.W., and MacNulty D.R. 2017. Diel predator activity drives a dynamic landscape of fear. bioRxiv: 221440.
Kuzyk G.W., Rohner C., and Schmiegelow F.K. 2005. Travel rates of Wolves, Canis lupus, in relation to ungulate kill sites in westcentral Alberta. Can. Field-Nat. 119(4): 573–577.
Lemke T.O., Mack J.A., and Houston D.B. 1998. Winter range expansion by the northern Yellowstone elk herd. Intermountain J. Sci. 4: 1–8.
Lotka, A.J. 1925. Elements of physical biology. Williams and Williams, Baltimore, Md.
MacNulty D.R., Mech L.D., and Smith D.W. 2007. A proposed ethogram of large-carnivore predatory behavior, exemplified by the wolf. J. Mammal. 88(3): 595–605.
MacNulty D.R., Smith D.W., Mech L.D., Vucetich J.A., and Packer C. 2012. Nonlinear effects of group size on the success of wolves hunting elk. Behav. Ecol. 23(1): 75–82.
Marshal J.P. and Boutin S. 1999. Power analysis of wolf–moose functional responses. J. Wildl. Manage. 63(1): 396–402.
McCullagh, P., and Nelder, J.A. 1989. Generalized linear models. Vol. 37. CRC Press, Boca Raton, Fla.
McLellan B.N., Serrouya R., Wittmer H.U., and Boutin S. 2010. Predator-mediated Allee effects in multi-prey systems. Ecology, 91(1): 286–292.
Mech, L.D. 1966. The wolves of Isle Royale. Fauna Ser. No. 7 [accessed 4 March 2016].
Mech L.D. 1994. Regular and homeward travel speeds of arctic wolves. J. Mammal. 75(3): 741–742.
Mech, L.D., and Boitani, L. 2003. Wolf social ecology. In Wolves. Behavior, ecology, and conservation. University of Chicago Press, Chicago, Ill.
Mech, L.D., Frenzel, L.D., Jr., and Karns, P.D. 1971. The effect of snow conditions on the ability of wolves to capture deer. In Ecological studies of the timber wolf in northeastern Minnesota. Edited by L.D. Mech and L.D. Frenzel, Jr. USDA Forest Service Research Paper NC-52. North Central Forest Experimental Station, St. Paul, Minn. pp. 51–59.
Mech, L.D., Adams, L.G., Meier, T.J., Burch, J.W., and Dale, B.W. 1998. The wolves of Denali. University of Minnesota Press, Minneapolis, Minn.
Mech L.D., Smith D.W., Murphy K.M., and MacNulty D.R. 2001. Winter severity and wolf predation on a formerly wolf-free elk herd. J. Wildl. Manage. 65(4): 998–1003.
Mech, L.D., Smith, D.W., and MacNulty, D.R. 2015. Wolves on the hunt. University of Chicago Press, Chicago, Ill.
Messier F. 1985. Social organization, spatial distribution, and population density of wolves in relation to moose density. Can. J. Zool. 63(5): 1068–1077.
Messier F. 1994. Ungulate population models with predation: a case study with the North American moose. Ecology, 75(2): 478–488.
Messier F. and Joly D.O. 2000. Comment: Regulation of moose populations by wolf predation. Can. J. Zool. 78(3): 506–510.
Metz M.C., Vucetich J.A., Smith D.W., Stahler D.R., and Peterson R.O. 2011. Effect of sociality and season on gray wolf (Canis lupus) foraging behavior: implications for estimating summer kill rate. PLoS ONE, 6(3): e17332.
Metz M.C., Smith D.W., Vucetich J.A., Stahler D.R., and Peterson R.O. 2012. Seasonal patterns of predation for gray wolves in the multi-prey system of Yellowstone National Park. J. Anim. Ecol. 81(3): 553–563.
Musiani M., Okarma H., and Jedrzejewski W. 1998. Speed and actual distances travelled by radiocollared wolves in Bialowieza Primeval Forest (Poland). Acta Theriol. 43(4): 409–416.
National Operational Hydrologic Remote Sensing Center. 2004. Snow data assimilation system (SNODAS) data products at NSIDC, [2003–2013]. National Snow and Ice Data Center, Boulder, Colo.
Nelson M.E. and Mech L.D. 1986. Relationship between snow depth and gray wolf predation on white-tailed deer. J. Wildl. Manage. 50(3): 471–474.
Nicholson A.J. 1933. The balance of animal populations. J. Anim. Ecol. 2: 131–178.
Peterson, R.O. 1977. Wolf ecology and prey relationships on Isle Royale. National Park Service Scientific Monogr. Ser. No. 11. Government Printing Office, Washington, D.C.
Peterson R.O. and Page R.E. 1988. The rise and fall of Isle Royale wolves, 1975–1986. J. Mammal. 69(1): 89–99.
Pyke G.H., Pulliam H.R., and Charnov E.L. 1977. Optimal foraging: a selective review of theory and tests. Q. Rev. Biol. 52: 137–154.
Rivrud I.M., Loe L.E., and Mysterud A. 2010. How does local weather predict red deer home range size at different temporal scales? J. Anim. Ecol. 79(6): 1280–1295.
Scarponcini P. 2002. Generalized model for linear referencing in transportation. GeoInformatica, 6(1): 35–55.
Schaefer, C.L. 2000. Spatial and temporal variation in wintering elk abundance and composition, and wolf response on Yellowstone’s Northern Range. Ph.D. thesis, Michigan Technological University, Houghton, Mich.
Schielzeth H. 2010. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1(2): 103–113.
Schmidt K., Theuerkauf J., and Kowalczyk R. 2007. Territory size of wolves Canis lupus: linking local (Bialowieża Primeval Forest, Poland) and Holarctic-scale patterns. Ecography, 30(1): 66–76.
Shelton, P.C. 1966. Ecological studies of beavers, wolves, and moose in Isle Royale National Park, Michigan. Ph.D. thesis, Purdue University, Purdue, Ind. Available from http://docs.lib.purdue.edu/dissertations/AAI6613260/ [accessed 18 April 2016].
Signer J., Balkenhol N., Ditmer M., and Fieberg J. 2015. Does estimator choice influence our ability to detect changes in home-range size? Anim. Biotelem. 3(1): 16.
Sikes, R.S., and the Animal Care and Use Committee of the American Society of Mammalogists. 2016. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97(3): 663–688.
Smith, D.W., and Bangs, E.E. 2009. Reintroduction of wolves to Yellowstone National Park: history, values, and ecosystem restoration. In Reintroduction of top-order predators. Edited by M.W. Hayward and M. Somers. Wiley-Blackwell, Oxford. pp. 92–125.
Smith D.W., Drummer T.D., Murphy K.M., Guernsey D.S., and Evans S.B. 2004. Winter prey selection and estimation of wolf kill rates in Yellowstone National Park, 1995–2000. J. Wildl. Manage. 68(1): 153–166.
Stephens, D.W., and Krebs, J.R. 1986. Foraging theory. Monographs in Behavior and Ecology. Princeton University Press, Princeton, N.J.
Sweeney J.M. and Sweeney J.R. 1984. Snow depths influencing winter movements of elk. J. Mammal. 65(3): 524–526.
Tallian A., Smith D.W., Stahler D.R., Metz M.C., Wallen R.L., Geremia C., Ruprecht J., Wyman C.T., and MacNulty D.R. 2017. Predator foraging response to a resurgent dangerous prey. Funct. Ecol. 31(7):1418–1429.
Thurber J.M. and Peterson R.O. 1993. Effects of population density and pack size on the foraging ecology of gray wolves. J. Mammal. 74(4): 879–889.
Travis J.M.J. and Palmer S.C.F. 2005. Spatial processes can determine the relationship between prey encounter rate and prey density. Biol. Lett. 1(2): 136–138.
Vucetich J.A., Hebblewhite M., Smith D.W., and Peterson R.O. 2011. Predicting prey population dynamics from kill rate, predation rate and predator–prey ratios in three wolf–ungulate systems. J. Appl. Ecol. 80(6): 1236–1245.
White P.J., Proffitt K.M., Mech L.D., Evans S.B., Cunningham J.A., and Hamlin K.L. 2010. Migration of northern Yellowstone elk: implications of spatial structuring. J. Mammal. 91(4): 827–837.
White P.J., Proffitt K.M., and Lemke T.O. 2011. Changes in elk distribution and group sizes after wolf restoration. Am. Midl. Nat. 167(1): 174–187.

Information & Authors

Information

Published In

cover image Canadian Journal of Zoology
Canadian Journal of Zoology
Volume 96Number 9September 2018
Pages: 1032 - 1042

History

Received: 21 August 2017
Accepted: 6 March 2018
Accepted manuscript online: 14 May 2018
Version of record online: 14 May 2018

Permissions

Request permissions for this article.

Key Words

  1. wolf
  2. Canis lupus
  3. elk
  4. Cervus elaphus
  5. encounter rate
  6. Yellowstone
  7. functional response

Mots-clés

  1. loup
  2. Canis lupus
  3. wapiti
  4. Cervus elaphus
  5. fréquence des rencontres
  6. Yellowstone
  7. réaction fonctionnelle

Authors

Affiliations

H.W. Martin* [email protected]
Fisheries, Wildlife/Conservation Biology, University of Minnesota-Twin Cities, Room 135, Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, USA.
L.D. Mech
US Geological Survey, Northern Prairie Wildlife Research Center, 8711-37th Street SE, Jamestown, ND 58401, USA.
J. Fieberg
Fisheries, Wildlife/Conservation Biology, University of Minnesota-Twin Cities, Room 135, Skok Hall, 2003 Upper Buford Circle, St. Paul, MN 55108, USA.
M.C. Metz
W.A. Franke College of Forestry and Conservation, University of Montana-Missoula, 32 Campus Drive, Missoula, MT 59812, USA.
D.R. MacNulty
Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT 84322, USA.
D.R. Stahler
Yellowstone Center for Resources, P.O. Box 168, Yellowstone National Park, WY 82190, USA.
D.W. Smith
Yellowstone Center for Resources, P.O. Box 168, Yellowstone National Park, WY 82190, USA.

Notes

*
Present address: University of Montana-Missoula, W.A. Franke College of Forestry and Conservation, 32 Campus Drive, Missoula, MT 59812, USA.
Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

There are no citations for this item

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Zoology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media