Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Simulating the response of natural ecosystems and their fire regimes to climatic variability in Alaska

Publication: Canadian Journal of Forest Research
September 2005

Abstract

The dynamic global vegetation model MC1 was used to examine climate, fire, and ecosystems interactions in Alaska under historical (1922–1996) and future (1997–2100) climate conditions. Projections show that by the end of the 21st century, 75%–90% of the area simulated as tundra in 1922 is replaced by boreal and temperate forest. From 1922 to 1996, simulation results show a loss of about 9 g C·m–2·year–1 from fire emissions and 360 000 ha burned each year. During the same period 61% of the C gained (1.7 Pg C) is lost to fires (1 Pg C). Under future climate change scenarios, fire emissions increase to 11–12 g C·m–2·year–1 and the area burned increases to 411 000 – 481 000 ha·year–1. The carbon gain between 2025 and 2099 is projected at 0.5 Pg C under the warmer CGCM1 climate change scenario and 3.2 Pg C under HADCM2SUL. The loss to fires under CGCM1 is thus greater than the carbon gained in those 75 years, while under HADCM2SUL it represents only about 40% of the carbon gained. Despite increases in fire losses, the model simulates an increase in carbon gains during the 21st century until its last decade, when, under both climate change scenarios, Alaska becomes a net carbon source.

Résumé

Le modèle de végétation dynamique adapté à l'échelle globale MC1 a été utilisé pour étudier les interactions entre le climat, les feux et les écosystèmes sous des conditions climatiques passées (1922–1996) et futures (1997–2100) en Alaska. Les projections montrent que 75 % à 90 % de la superficie de la toundra simulée en 1922 sera remplacée par une forêt boréale ou tempérée vers la fin du 21e siècle. Selon les résultats de la simulation, de 1922 à 1996, les feux auraient détruit annuellement une superficie de 360 000 ha et les émissions associées aux feux auraient causé des pertes d'environ 9 g C·m–2·an–1. Pendant la même période, 61 % des gains en carbone (1,7 Pg C) ont été consumés par le feu (1 Pg C). Selon des scénarios de changements climatiques futurs, les émissions provoquées par le feu augmenteraient à 11–12 g C·m–2·an–1 et la superficie brûlée augmenterait à 411 000 – 481 000 ha·an–1. Le gain en carbone prévu entre 2025 et 2099 s'élèverait à 0,5 Pg C selon le scénario de changements climatiques le plus chaud (CGCM1) et à 3,2 Pg C selon le scénario HADCM2SUL. Les pertes attribuables aux feux avec le scénario CGCM1 sont donc plus grandes que les gains en C au cours de cette période de 75 ans alors qu'avec le scénario HADCM2SUL, elles ne représentent qu'environ 40 % des gains en C. Malgré l'augmentation des pertes attribuables aux feux, les simulations du modèle montrent une augmentation des gains en C au cours du 21e siècle jusqu'à sa dernière décade lorsque l'Alaska devient une source nette de carbone selon les deux scénarios de changements climatiques.[Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

cover image Canadian Journal of Forest Research
Canadian Journal of Forest Research
Volume 35Number 9September 2005
Pages: 2244 - 2257

History

Version of record online: 9 February 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska
2. Disturbances in North American boreal forest and Arctic tundra: impacts, interactions, and responses
3. The costs and benefits of fire management for carbon mitigation in Alaska through 2100
4. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management
5. Prescribed fire science: the case for a refined research agenda
6. Short-term responses of boreal carbon stocks to climate change: A simulation study of black spruce forests
7. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire
8. Perspectives on Sustainable Forest Management in Interior Alaska Boreal Forest: Recent History and Challenges
9. Methane Feedbacks to the Global Climate System in a Warmer World
10. Potential influence of wildfire in modulating climate-induced forest redistribution in a central Rocky Mountain landscape
11. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests
12. Short‐Term Vegetation Recovery after a Grassland Fire in Lithuania: The Effects of Fire Severity, Slope Position and Aspect
13. A review of the relationships between drought and forest fire in the United States
14. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing
15. Appendix Publications and Reports Featuring MC1
16. Impact of 2050 climate change on North American wildfire: consequences for ozone air quality
17. Impact of 2050 climate change on North American wildfire: consequences for ozone air quality
18. Dominance of brown carbon in aerosol emissions from burning of boreal peatlands
19. Characterization of Land Transitions Patterns from Multivariate Time Series Using Seasonal Trend Analysis and Principal Component Analysis
20. Effect of increased fire activity on global warming in the boreal forest
21. Susceptibility of burned black spruce (Picea mariana) forests to non-native plant invasions in interior Alaska
22. Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery
23. Lichen communities and species indicate climate thresholds in southeast and south-central Alaska, USA
24. Nonlinear Effects of Stand Age on Fire Severity
25. Pyrogeographic models, feedbacks and the future of global fire regimes
26. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions
27. Land transitions from multivariate time series: using seasonal trend analysis and segmentation to detect land-cover changes
28. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems
29. Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems
30. Differences in the Potential Hydrologic Impact of Climate Change to the Athabasca and Fraser River Basins of Canada with and without Considering Shifts in Vegetation Patterns Induced by Climate Change
31. Satellite-based assessment of climate controls on US burned area
32. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model
33. Satellite-based assessment of climate controls on US burned area
34. North American vegetation model for land‐use planning in a changing climate: a solution to large classification problems
35. Human Pyrogeography: A New Synergy of Fire, Climate and People is Reshaping Ecosystems across the Globe
36. Simulating the impacts of disturbances on forest carbon cycling in North America: Processes, data, models, and challenges
37. Recent Climate Change Impacts on the Boreal Forest of Alaska
38. Fire in the Earth System
39. Linking forest fires to lake metabolism and carbon dioxide emissions in the boreal region of Northern Québec
40. The p CO 2 dynamics in lakes in the boreal region of northern Québec, Canada
41. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century
42. Global Pyrogeography: the Current and Future Distribution of Wildfire
43. Implications of changing climate for global wildland fire
44. Simulated response of conterminous United States ecosystems to climate change at different levels of fire suppression, CO2 emission rate, and growth response to CO2
45. Human Influences on Wildfire in Alaska from 1988 through 2005: An Analysis of the Spatial Patterns of Human Impacts
46. Chapter 5 Effects of Wildland Fire on Regional and Global Carbon Stocks in a Changing Environment
47. Chapter 15 Global Warming and Stress Complexes in Forests of Western North America
48. Sensitivity of Simulated Boreal Fire Dynamics to Uncertainties in Climate Drivers
49. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Forest Research

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media