Skip to main content

Advertisement

Log in

Bone Microenvironment Tissue Surrogates Engineered for Reporting of Metastasized Breast Cancer Osteolytic Activity

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Breast cancer metastasis to bone continues to be a major clinical problem, and patient-to-patient variability in rates of disease progression and metastasis complicate treatment even further. This may be due to differences in the cancer cells, the osteoclasts, or the pre-metastatic niche, but all of these contribute to proteolytic remodeling necessary for osteolytic lesion establishment, primarily through secretion of cathepsin K, the most powerful human collagenase. There is debate about the relative contributions of breast cancer cells and osteoclasts and synergism between the two in altering the biochemical and biomechanical properties of the colonized bone, as these are difficult to parse with animal models. To quantify the relative contributions of breast cancer cells and osteoclasts in bone resorption, we have been developing engineered bone microenvironment tissue surrogates by adapting a poly(ester urethane) urea system embedded with microbone particles. Here, we report their use with MDA-MB-231 breast cancer cells and RAW264.7 derived osteoclasts, to provide temporal, multiscale reporters of bone resorption that can be measured non-destructively: 1) collagen degradation measured by C-terminal collagen fragment release, 2) mineral dissolution by measuring calcium released with the calcium arsenazo assay, and also show their beneficial effects in upregulating cathepsin K expression compared to tissue culture polystyrene controls. These more natural derived bone surrogates may be useful tools in mimicking bone metastatic niche and determining differences between proteolytic activity of different patients’ tumor and bone resident cells in a controlled manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Cardoso et al., Ann Oncol 13, 197 (2002).

    Article  CAS  Google Scholar 

  2. G. R. Mundy, Nat Rev Cancer 2, 584 (2002).

    Article  CAS  Google Scholar 

  3. C. Le Gall, et al., Cancer Res 67, 9894 (2007).

    Article  Google Scholar 

  4. A. J. Littlewood-Evans et al., Cancer Res 57, 5386 (1997).

    CAS  Google Scholar 

  5. G. R. Mundy, Nat Rev Cancer 2, 584 (2002).

    Article  CAS  Google Scholar 

  6. P. Garnero et al., J Biol Chem 273, 32347 (1998).

    Article  CAS  Google Scholar 

  7. C. Le Gall, E. Bonnelye, P. Clezardin, Curr Opin Support Palliat Care 2, 218 (2008).

    Article  Google Scholar 

  8. S. Desmarais, F. Masse, M. D. Percival, Biol Chem 390, 941 (2009).

    Article  CAS  Google Scholar 

  9. K. D. Brubaker, R. L. Vessella, L. D. True, R. Thomas, E. Corey, J Bone Miner Res 18, 222 (2003).

    Article  CAS  Google Scholar 

  10. C. G. Kleer et al., Clin Cancer Res 14, 5357 (2008).

    Article  CAS  Google Scholar 

  11. W. A. Li et al., Anal Biochem 401, 91 (2010).

    Article  CAS  Google Scholar 

  12. B. Chen, M. O. Platt, J Transl Med 9, 109 (2011).

    Article  Google Scholar 

  13. R. J. Pelham Jr., Y. Wang, Proc Natl Acad Sci U S A 94, 13661 (1997).

    Article  CAS  Google Scholar 

  14. S. R. Peyton, P. D. Kim, C. M. Ghajar, D. Seliktar, A. J. Putnam, Biomaterials 29, 2597 (2008).

    Article  CAS  Google Scholar 

  15. C. F. Deroanne, C. M. Lapiere, B. V. Nusgens, Cardiovasc Res 49, 647 (2001).

    Article  CAS  Google Scholar 

  16. M. A. Wozniak, R. Desai, P. A. Solski, C. J. Der, P. J. Keely, J Cell Biol 163, 583 (2003).

    Article  CAS  Google Scholar 

  17. J. A. Rowley, G. Madlambayan, D. J. Mooney, Biomaterials 20, 45 (1999).

    Article  CAS  Google Scholar 

  18. P. Garnero et al., J Bone Miner Res 18, 859 (2003).

    Article  CAS  Google Scholar 

  19. N. B. Watts, Clinical Chemistry 45, 1359 (1999).

    Article  CAS  Google Scholar 

  20. F. Lecaille, D. Bromme, G. Lalmanach, Biochimie 90, 208 (2008).

    Article  CAS  Google Scholar 

  21. C. L. Wilder, K. Y. Park, P. M. Keegan, M. O. Platt, Archives of biochemistry and biophysics, (2011).

  22. M. O. Platt et al., Am J Physiol Heart Circ Physiol 292, H1479 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas, J.E., Parks, A.N. & Platt, M.O. Bone Microenvironment Tissue Surrogates Engineered for Reporting of Metastasized Breast Cancer Osteolytic Activity. MRS Online Proceedings Library 1625, 104 (2014). https://doi.org/10.1557/opl.2014.76

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2014.76

Navigation