Skip to main content
Log in

Molecular aspects of endosomal cellular transport

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The present review is dedicated to the analysis of molecular mechanisms of intracellular transport in eukaryotes. The different types of transport and intracellular metabolic pathways are described. The role of different cellular structures in various processes of intracellular traffic is outlined. The diversity and functional features of transport pathways are revealed. The process of intracellular transport of molecular cargo in different types of cells was described. Special attention is paid to transport processes in plant cell. The roles of cytoskeleton elements in intracellular transport are discussed. The discussion about further direction of transport mechanisms study was perfomed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hannah, M.J., Schmid, A.A., and Huttner, W.B., Synaptic vesicle biogenesis, Ann. Rev. Cell Dev. Biol., 1999, vol. 15, pp. 733–798.

    CAS  Google Scholar 

  2. Pelham, H.R.B., SNAREs and the secretory pathway-lessons from yeast, Exp. Cell Res., 1999, vol. 247, pp. 1–8.

    CAS  PubMed  Google Scholar 

  3. Bassham, D.C. and Raikhel, N.V., The pre-vacuolar t-SNARE AtPEP12p forms a 20S complex that dissociates in the presence of ATP, Plant J., 1999, vol. 19, pp. 599–603.

    CAS  PubMed  Google Scholar 

  4. Wickner, W. and Haas, A., Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms, Annu. Rev. Biochem., 2000, vol. 69, pp. 247–275.

    CAS  PubMed  Google Scholar 

  5. Bassham, D.C. and Blatt, M.R., SNAREs: cogs and coordinators in signaling and development, Plant Physiol., 2008, vol. 147, pp. 1504–1515.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Cole, N.B. and Lippincott-Schwartz, J., Organization of organelles and membrane traffic by microtubules, Curr. Opin. Cell Biol., 1995, vol. 7, pp. 55–64.

    CAS  PubMed  Google Scholar 

  7. Drubin, D.G. and Nelson, W.J., Origins of cell polarity, Cell, 1996, vol. 84, pp. 335–344.

    CAS  PubMed  Google Scholar 

  8. Mays, R.W., Beck, K.A., and Nelson, W.J., Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery, Curr. Opin. Cell Biol., 1994, vol. 6, pp. 16–24.

    CAS  PubMed  Google Scholar 

  9. Robinson, D.G., Pimpl, P., Scheuring, D., et al., Trying to make sense of retromer, Trends Plant Sci., 2012, vol. 17, pp. 431–439.

    CAS  PubMed  Google Scholar 

  10. Reyes, F.C., Buono, R., and Otegui, M.S., Plant endosomal trafficking pathways, Curr. Opin. Plant Biol., 2011, vol. 14, pp. 666–673.

    CAS  PubMed  Google Scholar 

  11. Griffiths, G. and Simons, K., The trans Golgi network: sorting at the exit site of the Golgi complex, Science, 1986, vol. 234, pp. 438–443.

    CAS  PubMed  Google Scholar 

  12. Gruenberg, J. and Howell, K.E., Membrane traffic in endocytosis: insights from cell-free assays, Annu. Rev. Cell Biol., 1989, vol. 5, pp. 453–481.

    CAS  PubMed  Google Scholar 

  13. Pfeffer, S.R. and Rothman, J.E., Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi, Annu. Rev. Biochem., 1987, vol. 56, pp. 829–852.

    CAS  PubMed  Google Scholar 

  14. Tooze, S.A., Weiss, U., and Huttner, W.B., Requirement for GTP hydrolysis in the formation of secretory vesicles, Nature, 1990, vol. 347, pp. 207–208.

    CAS  PubMed  Google Scholar 

  15. Costa de Beauregard, M.A., Pringault, E., Robine, S., and Louvard, D., Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells, EMBO J., 1995, vol. 14, pp. 409–421.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Rodriguez-Boulan, E. and Powell, S.K., Polarity of epithelial and neuronal cells, Annu. Rev. Cell Biol., 1992, vol. 8, pp. 395–427.

    CAS  PubMed  Google Scholar 

  17. Hachez, C., Bessere, A., Chevalier, A.S., and Chaumont, F., Insights into plant plasma membrane aquaporin trafficking, Trends Plant Sci., 2013, vol. 18, pp. 352–344.

    Google Scholar 

  18. Minin, A.A. and Kulik, A.V., Intracellular transport: principles of regulation, Usp. Bioorg. Khim., 2004, vol. 44, pp. 225–262.

    Google Scholar 

  19. Vale, R.D. and Fletterick, R.J., The design plan of kinesin motors, Ann. Rerv. Cell Dev. Biol., 1997, vol. 13, pp. 745–777.

    CAS  Google Scholar 

  20. Holzbauer, E.L. and Vallee, R.B., Dyneins: molecular structure and cellular function, Annu. Rev. Cell Biol., 1994, vol. 10, pp. 338–372.

    Google Scholar 

  21. Schroer, T.A., Structure, function and regulation of cytoplasmic dynein, Curr. Opin. Cell Biol., 1994, vol. 6, pp. 69–73.

    CAS  PubMed  Google Scholar 

  22. Reilein, A.R., Rogers, S.L., Tuma, M.C., and Gelfand, V.I., Regulation of molecular motor proteins, Int. Rev. Cytol., 2001, vol. 204, pp. 179–238.

    CAS  PubMed  Google Scholar 

  23. Buss, F., Luzio, J., and Kendrick-Jones, J., Myosin VI, an actin motor for membrane traffic and cell migration, Traffic, 2002, vol. 3, pp. 851–858.

    CAS  PubMed  Google Scholar 

  24. Tominaga, M., Kojima, H., Yokota, E., et al., Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity, EMBO J., 2003, vol. 22, pp. 1263–1272.

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Shimmen, T., Ridge, R.D., Lambiris, I., et al., Plant myosin, Protoplasma, 2000, vol. 214, pp. 1–10.

    CAS  Google Scholar 

  26. Dillman, J.F., Dabney, L.P., and Pfister, K.K., Cytoplasmic dynein is associated with slow axonal transport, Proc. Nat. Acad. Sci. USA, 1996, vol. 93, pp. 141–144.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Fath, K.R., Trimbur, G.M., and Burgess, D.R., Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells, J. Cell Biol., 1994, vol. 126, pp. 661–675.

    CAS  PubMed  Google Scholar 

  28. Liu, H. and Bretscher, A., Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport, J. Cell Biol., 1992, vol. 118, pp. 285–299.

    CAS  PubMed  Google Scholar 

  29. Munn, A.L., Stevenson, B.J., Geli, M.I., and Riezman, H., end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae, Mol. Biol. Cell, 1995, vol. 6, pp. 1721–1742.

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Trowbridge, I.S. and Collawn, J.F., Signal-dependent membrane protein trafficking in the endocytic pathway, Annu. Rev. Cell Biol., 1993, vol. 9, pp. 129–161.

    CAS  PubMed  Google Scholar 

  31. Gottlieb, T.A., Ivanov, I.E., Adesnik, M., and Sabatini, D.D., Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells, J. Cell Biol., 1993, vol. 120, pp. 695–710.

    CAS  PubMed  Google Scholar 

  32. Carpen, O., Pallai, P., Staunton, D.E., and Springer, T.A., Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alphs-actinin, J. Cell Biol., 1992, vol. 118, pp. 1223–1234.

    CAS  PubMed  Google Scholar 

  33. Lokeshwar, V.B., Fregien, N., and Bourguignon, L.Y., Ankyrin-binding domain of CD44(GP85) is required for the expression of hyaluronic acid-mediated adhesion function, J. Cell Biol., 1994, vol. 126, pp. 1099–1122.

    CAS  PubMed  Google Scholar 

  34. Liu, G., Thomas, L., Warren, R.A., et al., Cytoskeletal protein ABP-280 directs the intracellular trafficking of furin and modulates proprotein processing in the endocytic pathway, J. Cell Biol., 1997, vol. 139, pp. 1719–1733.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Zlobina, M.V., Kharchenko, M.V., Latkin, D.S., and Kornilova, E.S., Acetylation of microtubules during endocytosis of epidermal growth factor receptor (c-ErbB1) in interphase HeLa cells, Tsitologiia, 2010, vol. 52, pp. 466–476.

    CAS  PubMed  Google Scholar 

  36. Small, J.V., The actin cytoskeleton, Electron Microsc. Rev., 1988, vol. 1, pp. 150–174.

    Google Scholar 

  37. Hwang, J.U., Suh, S., Yi, H.J., et al., Actin filaments modulate both stomatal opening and inward K+-channel activities in guard cells of Vicia faba L., Plant Physiol., 1997, vol. 115, pp. 335–342.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Hirokawa, N., Kinesin and dynein superfamily proteins and the mechanism of organelle transport, Science, 1998, vol. 279, pp. 519–526.

    CAS  PubMed  Google Scholar 

  39. Desai, A., Verma, S., Mitchison, T.J., and Walczak, C.E., Kin I kinesis are microtubule-destabilizing enzymes, Cell, 1999, vol. 96, pp. 69–78.

    CAS  PubMed  Google Scholar 

  40. Vale, R.D. and Milligan, R.A., The way things move: looking under the hood of molecular motor proteins, Science, 2000, vol. 288, pp. 88–95.

    CAS  PubMed  Google Scholar 

  41. Lawrence, C.J., Dawe, R.K., Christie, K.R., et al., A standardized kinesin nomenclature, J. Cell Biol., 2004, vol. 167, pp. 19–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Lippincott-Schwartz, J., Cole, N.B., Marotta, A., et al., Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic, J. Cell Biol., 1995, vol. 128 P, pp. 293–306.

    Google Scholar 

  43. Burakov, A., Kovalenko, O., Semenova, I., et al., Cytoplasmic dynein is involved in the retention of microtubules at the centrosome in interphase cells, Traffic, 2008, vol. 9, pp. 472–480.

    CAS  PubMed  Google Scholar 

  44. Lawrence, S.B., Goldstein, B., and Ron, D.V., New cytoskeletal liaisons, Nature, 1992, vol. 359, pp. 193–194.

    Google Scholar 

  45. Sparkes, I., Recent advances in understanding plant myosin function: life in the fast lane, Mol. Plant, 2011, vol. 4, pp. 805–812.

    CAS  PubMed  Google Scholar 

  46. Berg, J., Powell, B., and Cheney, R., A millennial myosin census, Mol. Biol. Cell, 2001, vol. 12, pp. 780–794.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Lomakin, A.J., Semenova, I., Zaliapin, I., et al., CLIP-170-dependent capture of membrane organelles by microtubules initiates minus-end directed transport, Develop. Cell, 2009, vol. 17, pp. 323–333.

    CAS  Google Scholar 

  48. Vallee, R.B., Williams, J.C., Varma, D., and Barnhart, L.E., Dynein: an ancient motor protein involved in multiple modes of transport, J. Neurobiol., 2004, vol. 58, pp. 189–200.

    CAS  PubMed  Google Scholar 

  49. Vale, R.D., The molecular motor toolbox for intracellular transport, Cell, 2003, vol. 112, pp. 467–480.

    CAS  PubMed  Google Scholar 

  50. Paul, M.J. and Frigerio, L., Coated vesicles in plant cells, Semin. Cell Dev. Biol., 2007, vol. 18, pp. 471–478.

    CAS  PubMed  Google Scholar 

  51. Canaday, J., Stoppin-Mellet, V., Mutterer, J., et al., Higher plant cells: gamma-tubulin and microtubule nucleation in the absence of centrosomes, Microsc. Res. Tech., 2000, vol. 49, pp. 487–495.

    CAS  PubMed  Google Scholar 

  52. Capco, D.G., in The Cytoskeleton: A Multivolume Treatise, Hesketh, J.E. and Pryme, I.F., Eds., vol. 2, pp. 59–112.

  53. Goode, B.L., Durbin, D.G., and Barnes, G., Functional cooperation between the microtubule and actin cytoskeleton, Curr. Opin. Cell Biol., 2000, vol. 12, pp. 63–67.

    CAS  PubMed  Google Scholar 

  54. Vanstraelen, M., Inze, D., and Geelen, D., Mitosisspecific kinesins in Arabidopsis, Trends Plant Sci., 2006, vol. 11, pp. 167–175.

    CAS  PubMed  Google Scholar 

  55. Smith, L.G., Plant cytokinesis: motoring to the finish, Curr. Biol., 2002, vol. 12, pp. 202–209.

    Google Scholar 

  56. Abdel-Gany, I., Day, I.S., Simmons, P.K., and Reddy, A.S.N., Origin and evolution of kinesin-like calmodulin-binding protein, Plant Physiol., 2005, vol. 138, pp. 1711–1722.

    Google Scholar 

  57. Burridge, K. and Wennerberg, K., Rho and Rac take center stage, Cell, 2004, vol. 116, pp. 167–179.

    CAS  PubMed  Google Scholar 

  58. Pemberton, L.F. and Bryce, M.P., Mechanisms of receptor-mediated nuclear import and nuclear export, Traffic, 2005, vol. 63, pp. 187–198.

    Google Scholar 

  59. Ridley, A., Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking, Trends Cell Biol., 2006, vol. 16, pp. 522–529.

    CAS  PubMed  Google Scholar 

  60. Gasman, S., Kalaidzidis, Y., and Zerial, M., RhoD regulates endosome dynamics through diaphanousrelated formin and src tyrosine kinase, Nat. Cell Biol., 2003, vol. 5, pp. 195–204.

    CAS  PubMed  Google Scholar 

  61. Chavrier, P. and Goud, B., The role of ARF and rab GTPases in membrane transport, Curr. Opin. Cell Biol., 1999, vol. 11, pp. 466–475.

    CAS  PubMed  Google Scholar 

  62. Vetter, I.R. and Wittinghofer, A., The guanine nucleotide-binding switch in three dimensions, Science, 2004, vol. 294, pp. 1299–1304.

    Google Scholar 

  63. Hanton, S.L., Chatre, L., Matheson, L.A., et al., Plant Sar1 isoforms with near-identical protein sequences exhibit differential localizations and effects on secretion, Plant. Mol. Biol., 2008, vol. 67, pp. 283–294.

    CAS  PubMed  Google Scholar 

  64. Dhonukshe, P., Aniento, F., Hwang, I., et al., Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis, Curr. Biol., 2007, vol. 17, pp. 520–527.

    CAS  PubMed  Google Scholar 

  65. Hara-Nishimura, I.I., Shimada, T., Hatano, K., et al., Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles, Plant Cell, 1998, vol. 10, pp. 825–836.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Takahashi, H., Saito, Y., Kitagawa, S., et al., A novel vesicle derived directly from endoplasmic reticulum is involved in the transport of vacuolar storage proteins in rice endosperm, Plant Cell Physiol., 2005, vol. 46, pp. 245–249.

    CAS  PubMed  Google Scholar 

  67. Wang, Y.G., Wang, J., Sun, H.Q., et al., Phosphatidylinositol-4-phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi, Cell, 2003, vol. 114, pp. 299–310.

    CAS  PubMed  Google Scholar 

  68. Boehm, M. and Bonifacino, J.S., Adaptins: the final recount, Mol. Biol. Cell, 2001, vol. 12, pp. 2907–2920.

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Hughes, H. and Stephens, D.J., Assembly, organization, and function of the COPII coat, Histochem. Cell Biol., 2008, vol. 129, pp. 129–151.

    CAS  Google Scholar 

  70. Movafeghi, A., Happel, N., Pimpl, P., et al., Arabidopsis Sec21p and Sec23p homologs. Probable coat proteins of plant COP coated vesicle, Plant Physiol., 1999, vol. 45, pp. 1779–1786.

    Google Scholar 

  71. Battey, N.H., James, N.C., Greenland, A.J., and Brownlee, C., Exotytosis and endocytosis, Plant Cell, 1999, vol. 11, pp. 643–659.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Contreras, I., Ortiz-Zapater, E., Castilho, L.M., and Aniento, F., Characterization of Cop I coat proteins in plant cells, Biochem. Biophys. Res. Commun., 2000, vol. 273, pp. 176–182.

    CAS  PubMed  Google Scholar 

  73. Sato, K. and Nakano, A., Mechanisms of COPII vesicle formation and protein sortin, FEBS Lett., 2007, vol. 581, pp. 2076–2082.

    CAS  PubMed  Google Scholar 

  74. Ceriotti, A., Waste disposal in the endoplasmic reticulum, ROS production and plant salt stress response, Cell Res, 2011, vol. 21, pp. 555–557.

    PubMed Central  PubMed  Google Scholar 

  75. Stamnes, M.A. and Rothman, J.E., The binding of AP-1 slathrin adaptor particles to Golgi membranes requires ADP-ribosylation factor, a small GTP-binding protein, Cell, 1993, vol. 73, pp. 999–1005.

    CAS  PubMed  Google Scholar 

  76. Brodin, L., Löw, P., and Shupliakov, O., Sequential steps in clathrin-mediated synaptic vesicle endocytosis, Curr. Opin. Neurophysiol., 2000, vol. 10, pp. 312–320.

    CAS  Google Scholar 

  77. Wassmer, T., Attar, N., Harterink, M., et al., The retromer coat complex coordinates endosomal sorting and dynein-mediated transport, with carrier recognition by the trans-Golgi network, Dev. Cell, 2009, vol. 17, pp. 110–122.

    CAS  Google Scholar 

  78. Maxfield, F.R. and McGraw, T.E., Endocytic recycling, Nature Rev. Mol. Cell Biol., 2004, vol. 5, pp. 121–132.

    CAS  Google Scholar 

  79. Harbour, M.E., Breusegem, S.Y.A., Antrobus, R.A., et al., The cargo-selective retromer complex is a recruiting hub for protein complexes that regulate endosomal tubule dynamics, J. Cell Sci., 2010, vol. 123, pp. 3703–3717.

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Shimada, T., Koumoto, Y., Li, L., et al., AtVPS29, a putative component of a retromer complex, is required for the efficient sorting of seed storage proteins, Plant Cell Physiol., 2006, vol. 47, pp. 1187–1194.

    CAS  PubMed  Google Scholar 

  81. Carlton, J.G., Bujny, M.V., Peter, B.J., et al., Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport, J. Cell Sci., 2005, vol. 118, pp. 4527–4539.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Matsubayashi, Y., Ligand-receptor pairs in plant peptide signaling, J. Cell Sci., 2003, vol. 116, pp. 3863–7380.

    CAS  PubMed  Google Scholar 

  83. Isayenkov, S.V., Plant vacuoles: physiological roles and mechanisms of vacuolar sorting and vesicular trafficking, Cytol. Genet., 2014, vol. 48, no. 2, pp. 127–137.

    Google Scholar 

  84. Westphal, S., Soll, J., and Vothknecht, U.C., A vesicle transport system inside chloroplasts, FEBS Lett., 2001, vol. 506, pp. 257–261.

    CAS  PubMed  Google Scholar 

  85. Tse, Y.C., Mo, B., Hillmer, S., et al., Identification of multivesicular bodies as prevacular compartments in Nicotiana tabacum BY-2 cells, Plant Cell, 2004, vol. 16, pp. 672–693.

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Pratelli, R., Sutter, J.-U., and Blatt, M.R., A new catch in the snare, Trends Plant Sci., 2004, vol. 9, pp. 187–195.

    CAS  PubMed  Google Scholar 

  87. Sanderfoot, A.A. and Raikhen, N.M., The specificity of vesicle trafficking: coat proteins and snare, Plant Cell, 1999, vol. 11, pp. 629–641.

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Mardones, G.A., Snyder, C.M., and Howell, K.E., cis-Golgi matrix proteins move directly to endoplasmic reticulum exit sites by association with tubules, Mol. Biol. Cell, 2006, vol. 17, pp. 525–538.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Dupree, P. and Sherrier, D.J., The plant Golgi apparatus, Biochim. Biophys. Acta, 1998, vol. 1404, pp. 259–270.

    CAS  PubMed  Google Scholar 

  90. Neumann, U., Brandizzi, F., and Hawes, Ch., Protein transport in plant cells: in and out of the Golgi, Ann. Bot., 2003, vol. 92, pp. 167–180.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Rothman, J.E. and Weiland, F.T., Protein sorting by transport vesicles, Science, 1996, vol. 272, pp. 227–234.

    CAS  PubMed  Google Scholar 

  92. Rabouille, C. and Klumperman, J., Oponion: the maturing role of COPI vesicles in intra-Golgi transport, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 812–817.

    CAS  PubMed  Google Scholar 

  93. Smith, R.D. and Lupashin, V.V., Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation, Carbohydr. Res., 2008, vol. 343, pp. 2024–2031.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Jackson, C.L., Mechanisms of transport through the Golgi complex, J. Cell Sci., 2009, vol. 122, pp. 443–452.

    CAS  PubMed  Google Scholar 

  95. Patterson, G.H., Hirschberg, K., Polishchuk, R.S., et al., Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system, Cell, 2008, vol. 133, pp. 1055–1067.

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Van Meer, G., Voelke, D.R., and Feigenson, G.W., Membrane lipids: where they are and how behave, Nat. Rev. Mol. Cell Biol., 2008, vol. 9, pp. 112–124.

    PubMed Central  PubMed  Google Scholar 

  97. D’Angelo, G., Polishchuk, E., Di Tullio, G., et al., Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide, Nature, 2007, vol. 449, pp. 62–67.

    PubMed  Google Scholar 

  98. Kepes, F., Rambourg, A., and Satiat-Jeunemaitre, B., Morphodynamics of the secretory pathway, Int. Rev. Cytol., 2005, vol. 242, pp. 55–120.

    CAS  PubMed  Google Scholar 

  99. Dettmer, J., Hong-Hermesdorf, A., Stierhof, Y.D., and Schumacher, K., Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis, Plant Cell, 2006, vol. 18, pp. 715–730.

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Ueda, T., Yamaguchi, M., Uchimiya, H., and Nakano, A., Ara6, a plant-unique novel type Rab GTPase, functions in the endocytic pathway of Arabidopsis thaliana, EMBO J., 2001, vol. 20, pp. 4730–4741.

    CAS  Google Scholar 

  101. Geldner, N., Anders, N., Wolters, H., et al., The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth, Cell, 2003, vol. 112, pp. 219–230.

    CAS  PubMed  Google Scholar 

  102. Matheson, L.A., Hanton, S.L., Rossi, M., et al., Multiple roles of ARF1 in plant cells include spatially-regulated recruitment of coatomer and elements of the Golgi matrix, Plant Physiol., 2007, vol. 143, pp. 1615–1627.

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Zheng, H., Comacho, L., Wee, E., et al., A Rab-E GTPase mutant acts downstream of the Rab-D subclass in biosynthetic membrane traffic to the plasma membrane in tobacco leaf epidermis, Plant Cell, 2005, vol. 17, pp. 2020–2036.

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Chow, C.M., Neto, H., Foucart, C., and Moore, I., Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate, Plant Cell, 2008, vol. 20, pp. 101–123.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Goh, T., Uchida, W., Arakawa, S., et al., VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana, Plant Cell, 2007, vol. 19, pp. 3504–3515.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Happel, N., Honing, S., Neuhaus, J.M., et al., Arabidopsis nu A-adaptin interacts with the tyrosine motif of the vacuolar sorting receptor VSR-PS1, Plant J., 2004, vol. 37, pp. 678–693.

    CAS  PubMed  Google Scholar 

  107. Herman, E. and Schmidt, M., Endoplasmic reticulum to vacuole trafficking of endoplasmic reticulum bodies provides an alternative pathway for protein transfer to the vacuole, Plant Physiol., 2004, vol. 136, pp. 3440–3446.

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Miao, Y., Ding, Y., Sun, Q.-Y., et al., Plant bioreactors for pharmaceuticals, Biotechnol. Genet. Eng. Rev., 2008, vol. 25, pp. 363–380.

    CAS  PubMed  Google Scholar 

  109. Jauh, G.Y., Phillips, T.E., and Rogers, J.C., Tonoplast intrinsic protein isoforms as markers for vacuolar functions, Plant Cell, 1999, vol. 11, pp. 1867–1882.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Neuhaus, J.-M. and Rogers, J.C., Sorting of proteins to vacuoles in plant cell, Plant. Mol. Biol., 1998, vol. 38, pp. 127–144.

    CAS  PubMed  Google Scholar 

  111. Hinz, G., Hillmer, S., Baumer, M., and Hohl, I., Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the Golgi apparatus of developing pea cotyledons in different transport vesicles, Plant Cell, 1999, vol. 11, pp. 1509–1524.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Isayenkov, S., Isner, J.C., and Maathuis, F.J.M., Rice two-pore K+ channels are expressed in different types of vacuoles, Plant Cell, 2011, vol. 23, pp. 756–768.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Isayenkov, S., Isner, J.C., and Maathuis, F.J.M., Membrane localization diversity of TPK channels, Plant Signal. Behav., 2011, vol. 6, pp. 1201–1204.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Hara-Nishimura, I., Takeuchi, Y., Inoue, K., and Nishimura, M., Vesicle transport and processing of the precursor to 2S albumin in pumpkin, Plant J., 1993, vol. 4, pp. 793–800.

    Google Scholar 

  115. Levanony, H., Rubin, R., Altshuler, Y., and Galili, G., Evidence for a novel route of wheat storage proteins to vacuoles, J. Cell Biol., 1992, vol. 119, pp. 1117–1128.

    CAS  PubMed  Google Scholar 

  116. Vowels, J.J. and Payne, G.S., A dileucine-like sorting signal directs transport into an AP-3-dependent, clathrin-independent pathway to the yeast vacuole, EMBO J., 1998, vol. 17, pp. 2482–2493.

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Rose, J.K.C. and Lee, S.-J., Straying off highway: trafficking of secreted plant proteins and complexity in the plant cell wall proteome, Plant Physiol., 2010, vol. 153, pp. 433–436.

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Galili, G., ER derived compartments are formed by highly regulated processes and have special functions in plants, Plant Physiol., 2004, vol. 136, pp. 3411–3413.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Hara-Nishimura, I., Matsushima, R., Shimada, T., and Nishimura, M., Diversity and formation of endoplasmic reticulum-derived compartments in plants. are these compartments specific to plant cells?, Plant Physiol., 2004, vol. 136, pp. 3435–3439.

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Jürgens, G., Membrane trafficking in plant, Annu. Rev. Cell Dev. Biol., 2004, vol. 20, pp. 481–504.

    PubMed  Google Scholar 

  121. Rosado, A. and Raikhel, N.V., Understanding plant vacuolar trafficking from a system biology perspectives, Future Persp. Plant Biol., 2010, vol. 154, pp. 545–550.

    CAS  Google Scholar 

  122. Lienard, D., Sourrouille, C., Gomord, V., and Faye, L., Farming and transgenic plants, Biotech. Ann. Rev, 2007, vol. 13, pp. 115–147.

    CAS  Google Scholar 

  123. Nickel, W. and Seedorf, M., Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells, Ann. Rev. Cell Dev. Biol., 2008, vol. 24, pp. 287–308.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Isayenkov.

Additional information

Original Ukrainian Text © S.V. Isayenkov, A.S. Sekan, B.V. Sorochinsky, Ya.B. Blume, 2015, published in Tsitologiya i Genetika, 2015, Vol. 49, No. 3, pp. 61–79.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isayenkov, S.V., Sekan, A.S., Sorochinsky, B.V. et al. Molecular aspects of endosomal cellular transport. Cytol. Genet. 49, 192–205 (2015). https://doi.org/10.3103/S009545271503007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271503007X

Keywords

Navigation