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The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a
method to predict the output of systems composed by such elements.This strategy relies on themodularity of the used components
or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical
models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems.
Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict
when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability
of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly
depends on the capability of mastering this issue.This review discusses the predictability issues of basic biological parts (promoters,
ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex
gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all
the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated.

1. Background

In order to handle complexity in the design of customized
systems, engineers usually rely on a bottom-up approach:
components are quantitatively characterized and the output
of an interconnected system is predicted from the knowledge
of individual parts function [1]. This process is applied in all
the fields of engineering and is useful to hide the complexity
of the individual components functioning, thus using them
as input-output modules [2].

This strategy is successful only in a modular framework,
where parts behaviour does not change upon intercon-
nections and, in general, when the same parts are reused
in a different context [3, 4]. Even if this property does
not persist, the bottom-up approach is still feasible when
engineers are able to predict how parts behaviour varies as
a function of environmental changes or interconnections [5].
In electronics, examples of the latter situation are resistors:

they are characterized by an electrical resistance, which does
not change upon connection in different circuits. However,
it is well established that resistance changes as a function
of temperature and, for this reason, datasheets of electric
components report the temperature-resistance characteristic
in order to make the output of complex circuits predictable
when used in different environments. Another example is a
circuit with a nonzero impedance; it can exhibit a different
input-output behaviour when interconnected to different
loads. However, it is still possible to predict the output of
such interconnected systems since mathematical models of
electrical circuits are able to describe voltage and current
throughout the network.

Mathematical models are widely used in many areas
of engineering to support the early design steps of a sys-
tem, guide the debugging process, measure nonobservable
parameters, and finally predict the quantitative behaviour
of systems composed by precharacterized parts. Likewise,
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models also play an important role in a biological systems
framework; in fact, they are often used to study com-
plex metabolic interactions, like those occurring in disease
conditions to understand the underlying processes and/or
predict the effect of drugs [25]. Some mathematical models
of biological/physiological systems have also been approved
by the US Food and Drug Administration (FDA) for use
in simulated clinical trials, thus enabling researchers, for
example, to support or even skip expensive in vivo trials [26].

Synthetic biology aims to realize novel complex biological
functions with the same principles on which engineering
disciplines lay their foundations:modularity, abstraction, and
predictability [2, 27, 28]. As a result, synthetic biologists so
far have mainly focused on the definition of biological parts
and on their abstraction and standardization, in order to
deal with well-defined components with specific function
[29]. This process has brought to the creation of biological
parts repositories including DNA parts that can be shared
by the scientific community, like the MIT Registry of Stan-
dard Biological Parts [30–32], to standardized and easy-to-
automate DNA assembly strategies [33–35], and to standard
measurementmethodologies to share characterization results
of parts, like promoters [36, 37]. Researchers have also
focused on the realization of engineering-inspired functions
to learn the complexity that could be reached in a biological
context. Towards this goal, researchers built up devices that
implement logic gates and functions [19, 38–41], memories
[42], oscillators [43–45], other waveform generators [46, 47],
signal processing devices [48–50], and the like.Many of them
relied on mathematical models to support the early design
steps and to capture the behaviour of the designed circuit. For
example, two of the synthetic biologymilestones are a genetic
toggle switch [42] and an oscillator (the repressilator) [43],
both implemented in Escherichia coli via genetic networks of
properly connected transcriptional regulators. A semiquan-
titative investigation of the features required for a correct
circuit behaviour was performed via mathematical models,
by using dimensionless equations or reasonable parameter
values. Thanks to the model analysis, the authors could learn
useful guidelines for correct design of circuits exhibiting the
desired functioning, for example, fast degradation rates of
repressor proteins encoded in the oscillatory network [43].

The realization of complex functions has brought to
some biological systems of high impact. An engineered
pathway was implemented in recombinant yeast to produce
the antimalarial drug precursor artemisinin [51]; a biosensor-
encoding genetic device was implemented in microbes to
detect arsenic in drinking water and to provide a colour
change of its growth medium as visual output [52, 53];
microbes were recently engineered to produce bioethanol
from algal biomass [54] or advanced fuels from different
substrates [55].

However, despite many examples of complex engi-
neering-inspired function implementation and also of indus-
trially relevant solutions to global health, environmental, and
energy problems, a rigorous bottom-up design process is not
currently adopted because the predictability boundaries still
have to be clearly defined [3, 56, 57]. The high potential
of synthetic biology strongly depends on the achievement

of such task [58]. Trial-and-error approaches represent an
alternative: if synthetic biologists cannot design a system
from the bottom-up, they can rely on random approaches,
where, for example, circuit components are mutated and
the best candidate implementing the function of interest is
selected [38, 59, 60]. Depending on the reliability of pre-
dictions and of mathematical models, this process could be
completely random or partially guided. In general, trial-and-
error approaches are time- and resource-consuming, and are
characterized by a low efficiency. However, recent advances
in the construction of biological systems, for example, DNA
and/or strain production via automated procedures,may pro-
vide a good alternative to the rational bottom-up approach,
especially when accurate, automated, and possibly low-cost
screeningmethods are available to rapidly evaluate the output
of the constructed circuits [60].

This review discusses the predictability issues of basic
biological parts (promoters, ribosome binding sites—RBSs,
coding sequences, transcriptional terminators, and plasmids)
when used to design the desired biological function in the
form of a simple or complex gene expression system. Even
though synthetic biological systems may be implemented
in several organisms (or even in vitro [61]) and may have
disparate architectures and regulatory mechanisms [62, 63],
the reviewwill focus on predictability of parts in vivo in the E.
coli bacterium, according to the biological information flow
described in the central dogma of molecular biology [64]:
protein-coding DNA sequences (herein called genes) are
transcribed into mRNA molecules, which are converted into
proteins by ribosomes, and, finally, DNA sequences can be
replicated in living cells to propagate the encoded function to
the progeny.Thus, in the considered framework, the possible
basic architectures are shown in Box 1: promoters can trigger
the expression of a single gene (monocistronic architecture)
or a set of genes (polycistronic or operon architecture), each
gene is transcribed with its RBS upstream and finally termi-
nators stop transcription. Ribosomes complete the process by
translation of mRNA molecules into the proteins of interest,
from the start codon (generally AUG) to the stop codon
(generally UAA). Complex genetic circuits can be realized
with a set of such gene expression units, implementing the
interactions of interest and giving the desired product as
output. Genetic circuits can be placed on a plasmid vector or
otherwise they can be integrated into a target position of the
bacterial chromosome.

Even if other classes of parts can be used to construct
complex genetic systems and other elements can also affect
circuit behaviour, we will focus only on the abovemen-
tioned genetic parts and architectures, given a specific
strain and environment. Other important contexts, like the
host (the reciprocal variation of parts behaviour and host
metabolism when a circuit is incorporated), environmental
(the reciprocal variation of parts behaviour and environ-
mental parameters), ecological (changes of synthetic circuit
and surrounding community parameters, as well as strains
fitness), and evolutionary (changes of DNA composition)
contexts are reviewed elsewhere [57]. Other reviews are
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The simplest expression system(panel A) includes a promoter (curved arrow),
a ribosome binding site (RBS, oval), a gene (straight arrow) and a transcriptional terminator
(hexagon). A more complex architecture has an operon structure (panel B), where multiple genes,
with their own RBSs, are expressed by a single promoter; a two-gene operon is shown.
Individual or composite gene expression systems can be placed in a plasmid vector (panel C),
which is maintained by the host strain at a specific copy number per cell, depending on the
particular replication origin, or in the bacterial chromosome (panel D). Dashed line indicates the
genomic DNA of the host.
Promoters control the transcription of the downstream DNA. Their sequence determines the
information on transcriptional strength and regulation by other factors. Different promoter
classes are present in E. coli, according to the specific sigma factor that determines their
regulation. Other factors, such as activator/repressor proteins, which are widely used in synthetic
circuits, can provide an additional degree of control.
RBSs are small sequences that are placed upstream of a gene. They are transcribed into mRNA
but are not translated, since protein synthesis starts with the AUG codon of the coding sequence.
RBS sequence determines the binding affinity between ribosome and mRNA, thus affecting the
translation initiation rate. In particular, mRNA binding to ribosomes occurs at the
Shine-Dalgarno region of an RBS with the rRNA of the 30S ribosomal subunit of E. coli.
Transcriptional terminators of the rho-independent class exploit hairpin structures to stop RNA
polymerase activity during transcription. This class of terminators is commonly used in
synthetic circuits, as opposed to rho-dependent terminators that mediate transcription stop via
an ATP-dependent process, which has not been completely understood.
Genes encode the desired proteins, which can actuate disparate specific regulatory or
metabolic functions. Gene sequence can affect the mRNA folding, which may result in different
translation initiation rate and different decay rate of the transcript. Moreover, codon usage bias
determines preferences of specific codons over others for a given organism. For these reasons, two
identical proteins encoded by two different genes (designed exploiting genetic code redundancy),
can have extremely diverse synthesis rates.

Box 1: Genetic parts and architecture of a gene expression system.

complementary to the presentwork, describing software tools
for parts/pathway identification [65] and cellular behaviour
modelling at different scales [65–67].

Each of the biological parts and architectures described
in Box 1 will be considered. We will discuss to which extent
their function can be predictable and then a comparison
between bottom-up and trial-and-error approaches will be
carried out. For each part and architecture, the contribution
of mathematical models supporting the prediction of circuit
behaviour will be highlighted. Even though many computer-
aided design (CAD) tools are available for synthetic circuits
[68], only mathematical analysis tools (also including tools
from the field of systems biology) and predictive models of
parts function will be considered, while no software tool
for database access/development or for the assembly process
support [65] will be taken into account. In particular, the
considered tools can be ordinary differential equation (ODE)

models (or derived steady-state equation models) based on
empirical or mechanistic functions, or predictivemodels able
to infer parts behaviour given their sequence and/or their
DNA context.

2. Research Studies and Tools to Support
Bottom-Up Design

The kit of parts, architectures, and contexts available to
synthetic biologists will be discussed. Then, interconnection
issues will be considered. A summary of the selectedmethods
and tools available for parts/devices quantitative prediction is
reported in Table 1.

2.1. Promoters. Promoters are intrinsically context-depend-
ent parts, since it is known that their upstream and down-
stream elements may affect transcriptional activity [69–
73]. The research studies on the predictability of promoters
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Table 1: Selected computational methods and tools that support the bottom-up design in biological engineering.

Part, architecture or
context Description Reference

Promoters

Strength prediction tool for sigmaE promoters, using a
position weight matrix-based core promoter model and
the length and frequency of A- and T-tracts of UP
elements.

[6]

Strength prediction tool for sigma70 promoters, using
partial least squares regression.

[7]

Promoter-RBS pairs Strength prediction tool for sigma70 promoter-RBS
pairs, using an artificial neural network. [8]

RBSs

RBS Calculator: a web-based tool for RBS strength
prediction and forward engineering, frequently
updated and able to design RBS libraries.

[9]

RBS Designer: a stand-alone tool for RBS strength
prediction and forward engineering, it considers
long-range interactions within RNA and it can predict
the translation efficiency of mRNAs that may
potentially fold into more than one structure.

[10]

UTR Designer: a web-based tool for RBS strength
prediction and forward engineering, able to design RBS
libraries and with the codon editing option to change
RNA secondary structures.

[11]

Genes

GeMS: web-based tool for gene design, using a codon
optimization strategy based on codon randomization
via frequency tables.

[12]

Optimizer: web-based tool for gene design using three
possible codon optimization strategies: “one amino
acid-one codon”, randomization (called “guided
random”) and a hybrid method (called “customized one
amino acid-one codon”).

[13]

Synthetic Gene Designer: web-based tool for gene
design with expanded range of codon optimization
methods: full (“one amino acid-one codon”), selective
(rare codon replacement) and probabilistic
(randomization-based) optimization.

[14]

Gene Designer: stand-alone tool for gene design using a
codon randomization method based on frequency
tables and with the possibility to filter out secondary
structures and Shine-Dalgarno internal motifs.

[15]

Terminators

Termination efficiency prediction tool based on a linear
regression model using a set of sequence-specific
features identified via stepwise regression.

[16]

Termination efficiency prediction tool based on a
biophysical model using a set of free energies,
previously identified as important features.

[17]

Interconnected networks

A range of empirical or mechanistic ODE or
steady-state models can be used to predict complex
systems behaviour from the knowledge of individual
parts/devices parameters.

[5, 18–21]

Architecture
Protein expression prediction for the first gene of an
operon, given the downstream mRNA length, via a
linear regression model.

[22]

Context

Mechanistic ODE models where the DNA copy number
is explicitly represented. [23]

Protein expression prediction tool, based on linear
regression model, given the chromosomal position of
the gene and its orientation.

[24]
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have focused on their context-dependent variability and on
activity prediction given their nucleotide sequence. Context-
dependent variability studies aim to evaluate whether pro-
moters show the same activity in different contexts, for
example, when promoters have different sequences upstream,
when expressing different genes/mRNAs, or when other
independent gene expression cassettes are present in the
same circuit. Generally, the activity of a set of promoters
can be indirectly measured via reporter proteins, provided
that the downstream sequences are the same (i.e., identical
RBSs, reporter genes, terminators, and similar transcription
start sites—TSSs) so that mRNA primary and secondary
structures do not significantly vary among the promoter
measurement systems [37]. Using the same architecture, the
activity can be evaluated via qPCR, by directly measuring
the mRNA level [74]. Davis et al. [73] quantified a set of
constitutive promoters and found that activity was affected
up to 4-foldwhen a specific upstream (UP) sequence is placed
before promoters, even though in some cases activity was not
affected. Other studies showed that the upstream sequence-
dependent activity change could be as high as 300-fold
and the consensus sequences that can affect such different
transcriptional activity were identified [72, 75, 76]; this effect
was observed when using the rrnB P1 promoter, but activity
change was also observed for the lac promoter. On the other
hand, specific “anti” sequences downstream of promoters
can limit the RNA polymerase escape process, thus affecting
promoter activity [77]; such elements were found to decrease
sigma70 and sigma32 promoter activity up to 10-fold [69].
Davis et al. also tested the effects of different sequences flank-
ing promoters downstream, including an “anti” sequence or
different reporter genes (GFP, dsRed, and Gemini) with the
same RBS, yielding an activity change up to 2-fold [73]. A
similar fold change was observed in analogous experiments,
whereMartin et al. [78] testedGFP, lacZ-alpha, andGemini as
reporter genes. In their work, however, the 2-fold difference
persists for the strongest promoter, which might be affected
by an excess of the lacZ-alpha fragment compared to the
omega fragment needed for complementation. A study of our
group [20] yielded a lower estimate of activity change for a set
of 5 widely used promoters expressing the green fluorescent
protein (GFP) with the BBa B0032 RBS or the red fluorescent
protein (RFP) with the BBa B0032 or BBa B0034 RBS: only
one of the tested promoters showed a significant activity
change among the three conditions, with a coefficient of vari-
ation (CV) of 22%. The abovementioned studies expressed
promoter activities in RPUs, in order to provide comparable
measurements among the different reporters used. Recent
advances in DNA synthesis, assembly, and high-throughput
characterization techniques enabled the quantification of
very large libraries of single gene expression cassettes com-
posed by different promoters, RBSs, and target genes, by
measuring the fluorescence of reporter gene, as well asmRNA
level via qPCR or next generation sequencing. In particular,
Kosuri et al. performed the so far largest scale experimental
study, where 114 promoters and 111 RBSs were combined
upstreamof aGFP gene [60]. Promoterswere found to trigger
consistent RNA levels of the downstream transcript among
the different RBS-gene combinations. By using an ANOVA

model for data interpretation, it was found that promoter
sequence accounted for about 92% of total variability of
mRNA level, demonstrating that promoters are the main
factors affecting mRNA level, even though they expressed
different mRNAs. RBSs accounted for 4% of total variability,
which could be due to transcription rate modulation by the
sequence downstream of promoter or to other phenomena
not involving transcription, such as RBS-dependent mRNA
degradation or sequestration (see discussion in Section 2.2.)

The majority of flanking sequence-dependent studies
on promoters are relative to downstream sequences, while
upstream sequences are less frequently studied. Even though
highly stimulatory or inhibitory effects may be obtained via
UP or “anti” sequences, promoters were found to change
their activity within a reasonably low fold-change when not
flanked by such difficult elements.

Although such data gave a significant contribution
towards the understanding of promoter reusability, gene
expression systems composed by independent expression
cassettes are not similarly well studied and could yield unpre-
dictable effects. Hajimorad et al. [79] studied the mRNA
levels produced by different gene expression cassettes to
test the superposition of the effects in synthetic biological
systems at different copy number levels; they found condi-
tions where even three cassettes could provide predictable
levels of mRNA, while, in other configurations, cassettes
could not be considered as modular systems. Similarly, our
group [20] used two cassette-systems expressing GFP and
RFP under the control of a set of promoters, detecting
fluorescence as output. Cassette position was also studied.
Context-dependent variability was higher than for individual
cassette expressing different reporters (maximum CV of 33%
versus 22%). A part of this variability could be explained
by a different upstream sequence; that is, promoters could
be flanked by the transcriptional terminator of the upstream
cassette or by the plasmid sequence upstream of the cloning
site.

Activity prediction studies given the nucleotide sequence
of promoters have not yet produced accurate tools for the
widely used sigma70 promoters. Promoter strength can be
affected bymany sequence features, which are not completely
understood yet, including the −35/−10 sequences, the spacer
between them and the above discussed flanking sequences.
Recent efforts towards prediction include the works of
Rhodius et al. [6, 80], who developed position weight matrix-
based models to predict the activity of sigmaE promoters
as a function of their sequence, as well as their flanking
sequences (UP elements), with good predictive performance
(𝑟 = 0.86 after cross-validation) [6]. However, the same
methods are not likely to work for sigma70 promoters due to
their complex structure [80]. De Mey et al. used partial least
squares (PLS) regression to classify promoter strength as a
function of nucleotide sequence [7]; this approach accurately
predicted the activity of 6 out of 7 promoters used as a test
set. Meng et al. developed an artificial neural network (ANN)
to predict the strength of regulatory elements composed by
a promoter and an RBS [8]; this approach brought to the
accurate prediction of an initial test set of 10 promoter-RBS
pairs (𝑟 = 0.98) and good performance was also obtained on
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a second set of 16 newly constructed pairs.Thedescribed tools
provided promising results but additional work is needed to
independently validate such methods on other datasets and
to fully understand promoter sequence features.

In summary, reproducible context-dependent variability
studies should be performed to fully understand the factors
affecting promoter activity in individual expression cassettes
and in multiple cassette systems. Large libraries of parts are
now affordable and, for this reason, the analysis of such
factors will be facilitated, as well as activity prediction given
promoter sequence. Standard [37] and multifaceted [74]
characterization approaches have been proposed to provide
robust measurements that can be shared and reproduced in
many laboratories.

2.2. RBSs. RBSs are strongly context-dependent elements,
since their surrounding sequences can affect ribosome bind-
ing and, as a result, the translation initiation rate per tran-
script. In particular, even a few nucleotide changes in the
RBS or in the surrounding sequences can dramatically affect
translation [10] and the use of different genes downstream
of an RBS can provide completely different translational
efficiencies [81]. Given the sequence of a gene and its 5UTR,
biophysical models have been used to predict the translation
initiation rate by modelling local and global folding, as well
as the interaction between RBS and 16S ribosomal RNA.
Computational tools, such as the RBS Designer (stand-alone
application, [10]), the RBSCalculator (web-based application,
[9]), and the UTR Designer (web-based application, [11])
are available to perform such tasks. They take into account
the 5UTR sequence, as well as the first portion of coding
sequence to predict the translation initiation rate level. The
RBS Calculator and UTR Designer use similar biophysical
thermodynamics-basedmodels, while the RBSDesigner uses
a steady-state kinetic model of stepwise-occurring reactions
[82, 83]. These tools showed similar and reasonably good
predictive performance (𝑟2 > 0.8) and can also be used to
forward-engineer novel RBSs with a desired strength [83].
They differentiate for the use of different external tools for
energy computation [83] and for some specific peculiarities;
for example, RBS Calculator provides indication of confi-
dence and it is frequently updated [84], RBSDesigner consid-
ers long-range interactions within RNA and can predict the
translation efficiency ofmRNAs thatmay potentially fold into
more than one structure, while UTR Designer enables codon
editing to minimize secondary structures [83]. Other efforts
towards RBS prediction include an artificial neural network,
already cited above, to evaluate the strength of promoter-RBS
pairs [8].

The RBS Calculator is one of the most commonly used
tools in the synthetic biology community: it was used in basic
research studies to tune the response of a synthetic AND gate
[9], to generate a set of RBSs of graded strengths to evaluate
the transcription/translation processes [85], and to test DNA
assembly platforms [33, 35], as well as in applied research
to optimize biosynthetic pathways [86, 87]. Although it was
proved to be useful to guide the choice of proper RBS
sequences given a downstream gene, its accuracy is limited

and additional tools should be developed to improve the
predictability of RBSs [57, 81].

RBSs could also affect the mRNA decay rate by causing
different secondary structures [16]. In addition, Kosuri et
al. also observed a mutual interaction between transcription
and translation: in fact, translation efficiency can affect
mRNA levels, probably because the most translated mRNA
molecules are protected from degradation, compared to the
least translated mRNAs [60].

In summary, as in the case of promoters, large datasets
have been useful to show the contributions of differ-
ent context-dependent factors. Due to the strong context-
dependent nature of RBSs, experimental studies mainly
focused on flanking sequences, while the evaluation of RBS
modularity in complex circuits still needs to be studied.

2.3. Genes. Given a target protein, its coding sequence can
affect both transcription and translation processes [15, 88].
As described above, mRNA secondary structures could
affect mRNA degradation and limit RBS accessibility to
ribosomes and, in addition, AT-rich sequences can cause
premature transcriptional termination [89]. Codon usage has
been reported to affect the translation process [90]. In this
framework, most of the efforts towards the prediction of the
contribution of gene sequence to transcription/translation
processes have focused on the development of gene optimiza-
tion algorithms. To define them, several sequences need to
be constructed to cover a sufficient number of hypotheses;
although the cost of synthetic genes is greatly decreasing,
gene synthesis still brings to expensive studies [88]. For this
reason, the process of sequence optimization is not fully
understood and no consensus rules have been found for gene
optimization. Some research studies identified strong sec-
ondary structures as the primary limiting factors in protein
synthesis [91], while other studies did not find a correlation
between predicted secondary structure and expression level
[92]. On the other hand, in some studies expression level
has been found to correlate with the codon adaptation index
(CAI) [93, 94], often used to express the codon bias of a
gene towards common codons [95], while in other studies
this correlation was null [88, 91]. The codon randomization
method, where codons are extracted from codon usage
frequency tables, was found to be superior to the “one amino
acid-one codon” strategy, where the CAI is maximized [15,
92]. Finally, codon context, that is, the influence of codon
pair usage, was found to affect protein expression, although
no ready-to-use software tool is available to carry out an
optimization procedure based on such feature [90].

All the features described above might be gene and
variant dependent [88] and, for this reason, several studies
should be conducted to identify the correct features of
gene sequence affecting transcription, translation, and other
processes. In particular, the simultaneous measurement of
mRNA and protein level can provide exhaustive data to
decouple the effects of gene sequence changes on cellular
processes. In a large-scale study, performed by Goodman et
al., a library of >14,000 expression systems was constructed
to test the contribution of the N-terminal codons on gene
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expression [96]; they measured DNA, RNA, and protein
levels and confirmed that mRNA secondary structure is a
crucial factor which can tune gene expression up to ∼14-fold.

The research efforts carried out so far have brought to
different gene optimization tools, currently used by synthetic
biologists and gene synthesis companies to optimize protein
expression, according to codon usage frequency tables, global
GC content, minimization of hairpin structures within the
gene, and/or of secondary structures in the N-terminal
codons [97, 98].The free software tools proposed in literature
include, for instance, GeMS (web-based application, [12]),
Optimizer (web-based application, [13]), Synthetic Gene
Designer (web-based application, [14]), and Gene Designer
(stand-alone application, [15]). All the tools mainly differ-
entiate for their available options for designing genes (e.g.,
avoid unwanted restriction sites and inverted repeats, design
framework of oligonucleotides for gene synthesis) and for
their codon optimization strategy (e.g., “one amino acid-one
codon” method, probabilistic methods, or hybrid solutions,
based on codon frequency tables from different sources) to
take into account codon usage and constraints. Becausemany
available tools are proprietary of gene synthesis companies,
an accurate comparison of the implemented methodologies
is not feasible and, in addition, their performances still need
to be experimentally evaluated on different gene sets.

In summary, although prediction tools have been pro-
posed, no widely accepted algorithm is available to predict
the effects of gene sequence on transcription, translation, or
mRNA degradation.

2.4. Terminators. Rho-independent terminators are herein
considered. Although very efficient terminators are available
(e.g., the popular BBa B0015 double terminator from theMIT
Registry of Standard Biological Parts), the repeated use of
a small set of elements in a genetic circuit may result in
poor evolutionary stability [99, 100]. For this reason, reliable
methods to design new terminators with predictable strength
and methods to predict the efficiency of already existing
terminators given their sequence are required.

Terminator efficiency can be characterized via an operon-
structuredmeasurement system, where a promoter drives the
expression of two different reporter geneswith the terminator
sequence to bemeasured that is assembled between these two
genes. The two reporter proteins are quantified and termi-
nation efficiency is computed from their values, considering
the operon without the terminator of interest as a control
[16, 17, 101].

Like promoters and RBSs, also terminator efficiency has
been found to be dependent on the surrounding context.
In particular, Cambray et al. [16] tested different minimal
terminators, including only the hairpin and U-tail sequences
and compared their termination efficiency to the respective
full-length terminators. Efficiencies significantly changed
between the two contexts for almost all the 11 tested termi-
nators, demonstrating that sequences flanking the essential
terminator parts are crucial. The authors also used a multiple
linear regression model to build up a predictive tool for
transcriptional termination given the terminator sequence,

using a set of features identified via stepwise regression, but
the resulting predictor gave poor performance on the 54
terminators used (𝑟 = 0.61 after cross-validation). Only by
excluding the low efficiency terminators, low predicted fold-
ing frequency terminators, and extended terminators classes,
the Pearson correlation coefficient 𝑟 increased to 0.85 after
cross-validation. Through a complementary approach, Chen
et al. [17] experimentally characterized a large set of termi-
nators (582) and analyzed how sequence features contribute
to their strength. The dominant features were used to build
up a biophysical model that aimed to capture termination
strength (Ts) as a function of the U-tract, hairpin loop, stem
base, and A-tract-free energies. The model was used to fit via
linear regression the experimentally determined Ts, yielding
a squared 𝑟 value of 0.4, which results in low predictive
performances. Although not currently available to users, the
tools developed in the above publications [16, 17] can be
implemented through the provided regression coefficients,
web-based nucleic acid folding tools, and specific indexes
computed from terminator sequences. These two recent
studies relied on experimental measurements performed via
the abovementioned operon structure with reporter genes.
However, Cambray et al. constructed measurement plasmids
with RNAse sites flanking the terminator to be measured, in
order to avoid terminator-dependent mRNA folding, which
might affect the translation efficiencies of the two reporter
genes. The authors tested RFP-GFP and GFP-RFP operons
with terminators flanked by RNAse III, RNAse E, or non-
functional RNAse III sites.The configuration giving the lower
coefficient of variance for the upstream gene level was the
RFP-GFP operon with RNAse III sites, which was used for all
the characterization experiments of their paper. Conversely,
Chen et al. used a GFP-RFP operon without RNAse sites,
since they found that, in their configuration, RNAse E
sites presence affected the downstream gene expression. In
light of these findings, a standard measurement method for
terminators still needs to be defined in order to enable reliable
quantifications and to avoid potential mechanisms that may
complicate the measurement of terminator efficiency, for
example, promoters that might arise at the interface of the
terminator to be measured and the downstream gene of the
operon [17].

In summary, sequence features affecting terminators
behaviour have been recently evaluated on large datasets, but
predictive models with good performances are not available
yet, demonstrating that different models and additional
knowledge on transcriptional termination are needed, as well
as a standardized setup for experimental measurements.

2.5. Interconnected Networks and Retroactivity. In the phi-
losophy of bottom-up composition of biological systems,
arbitrarily complex networks are considered as black-box
modules that can be interconnected. Their characterization
can provide the essential elements to describe their steady-
state and dynamic behaviour. In a modular framework, such
knowledge enables the prediction of composite networks
functioning. To quantitatively test themodularity boundaries
of biological systems, recent studies have focused on the
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characterization of systems subparts and on the prediction
of the behaviour of composite systems, obtained upon their
interconnection. Wang et al. [18] tested different regulated
promoters (inducible by arabinose, AHL, and IPTG) as the
inputs of AND/NAND gates, whose output was visualized
via GFP at two different temperatures. After a fitting process
involving one specific configuration (i.e., one of the cited
input modules), the fluorescence output of the other config-
urations was predicted from the individual characterization
of input devices and AND/NAND gates. Experimental data
and predictions exhibited a Pearson correlation coefficient of
0.86 to 0.98, even though some specific input combinations
yielded highly different values. Moon et al. [19] constructed
and characterized a set of AND gates. Then, they used them
to engineer composite two layered logic functions: a 3-input
system including 3 input devices connected to two AND
gates and a 4-input system including 4 input devices and 3
AND gates. The latter represented one of the largest genetic
programs built up so far, with a total of 11 regulatory proteins,
21 kbp-length on three plasmids. The basic AND gates were
individually characterized as before and the output of the
complex 3- and 4-input systems was predicted and compared
with experimental data. The 3-input system yielded a lower
deviation between prediction and data, compared to the 4-
input system. Our group also faced prediction problems with
simple interconnected networks composed by an input device
(inducible promoters or constitutive promoters of different
strengths) assembled with a TetR-based NOT gate which
provides GFP as output [20]. The individual input devices
were characterized via RFP measurements and the steady-
state transfer function output of the NOT gate driven by each
of the input systems was quantified. These data were fitted
with a Hill function: they had similar maximum activity and
Hill coefficients, while the switch point varied about 44%,
which was considered as an estimate of interconnection error
with these elements.

The mentioned studies evaluated interconnection-
dependent variability in considerably complex systems but
they did not characterize the causes of such deviations.One of
the best characterized and formalized interconnection errors
is retroactivity, a phenomenon that extends the electronic
engineering notion of impedance or loading to biological
systems [5]. The functioning of a given system can change
when a downstream or upstream system is connected, for
example, because of unwanted sequestration of transcription
factors by the connected modules. In this case, the individual
systems cannot be considered to be modular; however,
given the knowledge of the parts to be combined, such
unwanted interactions can be modelled, thus having an
interconnected system with predictable behaviour. Jayanthi
et al. [21] experimentally tested a model system including
an ATc-inducible LacI production module connected to
a lac-repressible promoter with GFP downstream. This
composite system was placed in a medium-copy plasmid and
tested individually or in presence of a downstream “client,”
including lac operator sites in a high-copy plasmid, thus
providing additional binding sites for LacI. The presence of
the client significantly affected the induction and deinduction
dynamics. This phenomenon was captured by a mechanistic

model describing the LacI-occupied DNA sites upstream of
GFP and in the client binding, as a function of ATc induction.

2.6. Circuit Architecture. Most of the research studies
described above are based on single gene cassettes. The
polycistronic operon structure could be preferred when
expressing genes carrying out similar functions that can be
controlled by the same promoter. Although predictable RBS
tuning in operons has been reported [87], the prediction of
protein levels encoded by genes in operons is not trivial and
cannot be simply inferred by the protein levels of individual
gene cassettes. In particular, the specific operon structure
can affectmRNAdegradation rate and ribosome accessibility.
Lim et al. developed and experimentally tested a mathemat-
ical model of transcription and translation coupling, which
predicts the protein level encoded by the first gene as a
function of the operon length [22].They found and predicted
protein level variations up to 2- to 3-fold. In a complementary
framework, Levin-Karp et al. studied the translational cou-
pling of an operon, that is, the mutual relationships between
the translation efficiencies of neighbouring genes [102]. They
individuated a >10-fold change for the protein level encoded
by the second gene as a function of the translation rate of the
first gene. However, the findings of Lim et al. and Levin-Karp
et al. were not valid for all combinations of genes and the same
phenomena were not observed in different studies [61, 102].

Themeasurement ofmRNA levels of a transcribed operon
has been useful to decouple the effects of RNA stability
and translation rate change [102]. In summary, other math-
ematical analyses are needed to develop predictive tools that
can guide biological engineers in the composition of operon
structures with quantitatively predictable function, which
can be inferred by the knowledge of promoter, RBSs, gene
sequence, genes position, operon length, and other possible
features [22].

2.7. Genetic Context. The context in which a gene expression
cassette or a complex circuit is placed can affect its quantita-
tive behaviour. Genetic contexts include plasmids replicating
at different copy numbers per cell or the bacterial chro-
mosome. Given a single gene expression cassette, plasmid
sequence can affect promoter or terminator activity bymeans
of the sequences flanking the cloning site, as described above
for these two part classes. Moreover, intuitively, DNA copy
number determines different levels of all the species (mRNA
and protein), but such levels could be unpredictable, since
cells may exhibit metabolic overloading when copy number
is increased, thus showing nonlinear changes. This effect
is commonly observed in expression cassettes at high copy
number [20, 79, 103] and needs to be characterized when the
cassette copy number is to be tuned. Furthermore, plasmid
copy number can be intrinsically noisy [104, 105] and can also
change when multiple plasmids are incorporated in the same
cell [106]. To test the latter case, Lee et al. [106] showed that
low copy plasmids with the heat-sensitive pSC101 replication
origin maintain their copy number (about 5 copies per cell)
in single plasmid systems and in 3-plasmid systems, while
plasmids with the medium or high copy replication origins
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(p15A and ColE1, resp.) showed copy number increase when
used in the 3-plasmid system compared to the single plasmid
system.

Mathematical models of gene regulatory networks often
use empirical Hill functions to describe activation or repres-
sion of cellular species, butDNAcopynumber is not explicitly
present in the equations [23, 103]. For this reason, even by
assuming a linear change of cellular species as a function
of DNA copy number, mechanistic mathematical models
should be defined to easily study the copy number effects.
Although such models are also widely used to describe
biochemical reactions, they are more difficult to study and
identify than empirical models, thus requiring additional
work to fully characterize the system of interest. Mileyko et
al. used such class of models to study the copy number effects
on different gene network motifs [23].

The integration of the desired expression cassette in the
bacterial chromosome determines the maintenance of its
DNA in a single copy, replicated with the genome. However,
the quantitative behaviour of parts in the genomic context can
be difficult to predict. For example, the real copy number of
the desired DNA could change when integrated in different
genomic positions because the sequences near the bacterial
replication origin are expected to be replicated earlier than
the other sequences [24, 107] and thus the specific DNA
segment is actually present in the cell at a slightly higher
copy number, on average.The complexity of genomic context
is not limited to this effect and other not fully understood
phenomena could limit the prediction of an integrated
cassette. For example, transcriptional read-through from
flanking genomic cassettes could affect the expression of the
synthetic cassette.

3. Trial-and-Error Approaches

Thedesign of a desired biological function can be achieved by
randomly changing its DNA-encoded elements. In particular,
promoters, RBSs, architectures, and contexts are varied, via
disparate experimental methods, and the resulting circuit is
screened. The success of all these methods relies on parts
generation and screening efficiency, which should allow
an easy and high-throughput construction and recognition
of the desired phenotype [60]. Here, only representative
studies are illustrated, which randomly optimize promoters,
RBSs, genes, architectures, and context towards a target
circuit/pathway functioning.

Promoters upstream of one or more target genes is
randomly changed by directly synthesizing new promoter
sequences or by assembling the genes under the control
of a collection of promoters. In the first case, degenerate
primers can be used to insert a new random promoter
sequence upstream of a gene [108]. In the second case,
promoters from existing collections of parts [55] or random
fragments [109, 110] can be used in the same manner and
the resulting constructs are screened. In this latter case,
the characterization of promoters (or the quantification of
the transcriptional activity of random fragments) is not
required, because only the circuit outcome is considered to

optimize the process. These two methods can be combined
by producing libraries of synthetic random promoters, when
required with the desired design constraints (e.g., the desired
operator sites) [74, 111], that are screened by reporter genes to
yield a collection of parts with diverse and graded activity;
then, elements can be randomly assembled to tune the
desired circuit/pathway [74, 111]. Such procedure could be
partially rational: inducible promoters can be used to probe
the optimal activity of a target gene and only a subset of the
candidate newly generated promoters, having a constitutive
activity similar to the optimal one, can be tested [20, 112, 113].

By following a similar procedure, RBSs can be randomly
changed and selected. Anderson et al. [38] and Kelly [101]
repaired a nonfunctional AND gate and a logic inverter,
respectively, by random mutagenesis of the RBS upstream
of a regulatory gene. The two gates were nonfunctional
because their activity range in input did not match the
activity range provided by the upstream promoter used in the
final interconnected circuit. The RBS sequence mutagenesis
and screening process produced circuits with the expected
behaviour. The use of existing collections of RBSs can also be
exploited instead of creating new ones [42, 114]. The random
mutagenesis of promoters and RBSs can be performed via
different widely used molecular biology methods, including
error-prone PCR or DNA amplification with degenerate
primers. High-throughput techniques have been recently
proposed to simultaneously mutate the sequence of several
elements, also in the genome, via automated procedures. The
multiplex automated genome engineering (MAGE) approach
was used, coupled with a microfluidic automatic system and
with degenerate single-strandedDNAs to enable the lycopene
pathway optimization through RBSmutagenesis for 24 target
genes in plasmid or genome [115].

Genes have been randomly mutated mainly to obtain
different functional protein variants with improved perfor-
mance [59]. Since this approach causes amino acid variation,
instead of synonymous codon replacement, the resulting
protein is different. Such approaches are beyond the focus of
this review. Codon change studies, without affecting protein
sequence, are not widely used and they are limited to the
experimental works carried out to find gene optimization
rules, as described in Section 2.3 of this review. Similarly, ter-
minators are not commonly targeted for random mutations.

When dealingwith polycistronic designs, the architecture
of gene expression cassettes can be randomly varied by
changing the position of the genes in an operon or by flanking
genes with libraries of tunable intergenic regions (TIGRs)
[116]. Since the target protein level produced by genes in
operons is not currently predictable, the first, intuitive,
method relies on random change of gene position. This, in
several studies, yielded highly diverse protein levels among
the shuffled constructs. For example, bicistronic operons
including the 1a-hydroxylase, adrenodoxin, and NADPH-
adrenodoxin reductase genes (called ADX and ADR), used
as redox partners to characterize the 25-hydroxyvitamin D3
1a-hydroxylase gene, were switched (yielding ADX-ADR and
ADR-ADX constructs) and both ADR and ADX expression
levels varied up to 5-fold [117]. On the other hand, the
use of TIGRs relies on the assembly of various control
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elements (mRNA secondary structures, RNAse cleavage sites,
RBS sequestering sequences, etc.) within operon genes. This
random approach has proved to enable a >100-fold range of
enzyme levels and a 7-fold improvement of productivity for a
synthetic mevalonate pathway [116].

The genetic context can also be randomly optimized.
Plasmid copy number change is an intuitive method to
tune the output of circuits and pathway. Kittleson et al.
[118] constructed different-allele (DIAL) strains that had the
same genetic background except for an expression cassette
providing different protein levels of a trans-acting replication
factor (Pi or RepA); plasmids with the R6K and ColE2
replication origins can be maintained at disparate copy
number per cell levels, due to the regulation by Pi and RepA,
respectively. The resulting strains were successfully used
to optimize a violacein biosynthetic pathway. Considering
genetic context at genomic level, different methods were
used to optimize integration position and copy number
of synthetic DNA-encoded production pathways via ran-
dom approaches. Santos et al. developed a recombinase-
assisted genome engineering (RAGE) approach, where lox
sites, recognized by the Cre recombinase, are exploited to
integrate very large synthetic DNA fragments into the desired
genomic position, thus enabling the trial-and-error search
among several predefined candidate loci [119]. They used
it to optimize a 34Kb heterologous pathway for alginate
metabolism. On the other hand, the random insertion of the
desired DNA parts is often carried out through transposable
elements. By randomly optimizing promoter activity and
genomic position at the same time, Yomano et al. optimized
the expression of an ethanol production pathway [120]. In
particular, they integrated a promoter-less 3-cistron ethanol
production cassette in random positions of the strain of
interest via a mini-Tn5 cassette (transpososome), relying on
the random placement of the cassette under the control of
promoters with optimal strength in the optimal genomic
position.

Chromosomally integrated circuits or pathways can be
also optimized by randomly changing their copy number.
Methods to carry out this task rely on genomic integration
of the DNA of interest together with an antibiotic resistance
cassette; subsequently, recombinant strains are evolved in
presence of increasing antibiotic concentration, to promote
the tandem duplication of the recombinant DNA cassette,
until a target efficiency is reached. This method has provided
recombinant strains containing more than 25 copies of the
DNA-encoded ethanol production pathway to be optimized
[121, 122]. A further refinement of the methods was carried
out by Tyo et al., where the chemically inducible chromoso-
mal evolution (CIChE) was described [123]. It is analogous
to the previously described procedure, but when the desired
efficiency is reached the recA gene (promoting homologous
recombination) is knocked out. CIChE was applied to poly-
3-hydroxybutyrate (PHB) and lycopene production, yielding
significant pathway improvement (4-fold and 60%, resp.).
This method produced approximately 40 consecutive copies
of the DNA-encoded pathway and 10-fold improvement on
genetic stability [123].

4. Interventions on Circuit Structure to
Improve Predictability

Although individual parts, networks, architectures, and con-
texts have the abovementioned predictability issues, several
efforts have been undertaken to modify some of these
elements to decrease their context-dependent variability and
improve their predictability.

Davis et al. designed a set of insulated promoters that
extend from −105 to +55 from the transcription start site [73].
These elements had amore predictable activity than noninsu-
lated promoters when tested in different contexts. Mutalik et
al. proposed a bicistronic design (BCD) of gene expression
cassettes to effectively predict the translation initiation rate
of a downstream gene [81]. This design includes a small
open reading frame (ORF), with its own RBS, assembled
downstream of the promoter of interest. The stop codon of
this ORF is fused to the start codon of the gene of interest
(thus having TAATG), which is assembled downstream.
The RBS of the gene of interest is included in the small
ORF upstream. With this design, inhibitory RNA structures
around the gene of interest start codon or RBS are eliminated
by the intrinsic helicase activity of ribosomes arriving at the
stop codon of the upstream ORF. By forward-engineering an
expression cassette via BCD, users should obtain the expected
relative expression within 2-fold of the target value with 93%
probability, which represents a great improvement over state-
of-the-art predictive tools for RBSs [9, 81].

Qi et al. proposed the use of bacterial clustered regularly
interspaced short palindromic repeat (CRISPR) pathway
elements to engineer specific posttranscriptional cleavage of
multigene operons to yield predictable expression of the indi-
vidual genes, also when placed in different positions [124].
Via a complementary approach, Lou et al. used ribozymes,
assembled downstream of a promoter, to improve the pre-
dictability of gene expression [125]; ribozymes cleave the
mRNA eliminating their 5 end and also act as transcription
insulators.

Del Vecchio et al. [5, 126] proposed a system able to over-
come retroactivity issues upon interconnection of biological
systems, thus implementing a buffer (or insulator) device.
It strongly relies on engineering-inspired insulators, such as
noninverting operational amplifiers. The biological imple-
mentation of this mechanism includes phosphorylation-
dephosphorylation reactions, which act with fast timescales,
but it needs to be experimentally validated.

5. Conclusions

This review has described several aspects of the design
of genetic circuits with predictable function. Bottom-up
approaches have been recently investigated to mimic the
traditional design processes in engineering areas. In this
context, research studies have been carried out to evaluate
the predictability boundaries of biological systems composed
by precharacterized parts, providing the expected intercon-
nection error, estimated from the study of model systems,
and highlighting situations where circuits cannot behave
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(i) What is still needed to fully understand the context-dependent variability of
biological parts?

(ii) How can we develop accurate computational tools for the bottom-up biological
engineering?

(iii) How can we support the construction of novel synthetic biology-based
solutions?

(iv) How can we understand, model and predict cell-to-cell variability in the
functioning of biological systems?

(v) If the fully predictable engineering of biological systems is not possible, how can
we improve the efficiency of trial-and-error approaches?

Box 2: Outstanding questions.

as intended. Mathematical models support the bottom-up
design steps, from the early feasibility study of complex
functions to the quantitative prediction of circuit behaviour
from the knowledge of basic parts function and, finally, to the
debugging step.

To exploit the full potential of synthetic biology via an
engineering-inspired bottom-up design of circuits, several
challenges need to be faced.Themain crucial issues identified
in the context of this work are delineated in Box 2 in the form
of outstanding questions and they are herein discussed.

Predictable biological engineering requires deepening
our knowledge on context dependency and reusability of bio-
logical parts, by discovering the features that play important
roles in parts function predictability. Technology advances
in the DNA synthesis field can support the testing of large
number of hypotheses by providing huge libraries of con-
structs at affordable price. In fact, although large-scale studies
have been reported to support the investigation of different
aspects of parts predictability [60, 81, 96], the cost and scale of
DNA synthesis are still a major bottleneck for basic research,
since many studies require a very large number of construct
variants, as in the case of codon usage dependency in pro-
tein expression [88]. The development of high-throughput
methods for parts measurement plays a complementary role,
because multifaceted characterization of parts performance
needs to be carried out. In particular, to fully characterize
the activity of parts, the simultaneous quantification of DNA,
RNA, and proteins is required to accurately decouple effects
due to circuit copy number, transcription, and translation,
to improve the knowledge of all the atomic steps involved
in parts function. In addition, ad hoc experimental designs,
data analysis tools, and mathematical models can support
the above procedures; for example, models can be of help
in the estimation of nonobservable parameters, useful to
characterize parts function [36].

Empirical mathematical models of gene regulatory net-
works are currently used to summarize the function of
parts and predict the quantitative behaviour of higher-order
devices. Although they are widely used, in some cases mech-
anistic models could bemore appropriate tools, such as in the
study of DNA copy number variations or retroactivity effects.
Other tools enable the prediction of parts activity from the
knowledge of their nucleotide sequence. Although promising
results have been obtained, particularly in the case of RBSs

that are already optimized via these computational methods,
these tools need to be significantly improved. The data and
knowledge gained in the above “discovery” step are to be
exploited in the development of predictive computational
tools with greater accuracy than the current ones. In this
context, novel tools can be based on the acquired biological
knowledge, which will be used to define essential rules
for parts function prediction or can be data-based, where
machine learning methods are used to learn the relationships
of interest for parts prediction. Context-dependent activity
change of individual parts and mathematical models of
interconnected networks should ultimately be integrated to
contribute unique tools for interconnected circuit design
from parts sequence.

In addition to existing parts prediction, an ambitious
goal of synthetic biology is the construction of unnatural
parts with finely tuned customized function. To this aim, the
computational design tools need to be expanded to support
the forward engineering of new components according to
specific design rules, learned from data examples or from
the acquired biological knowledge. Again, the currently
available RBS design tools already enable the design of
RBSs with desired strength, given the downstream gene
sequence, although their performance needs to be signifi-
cantly improved [57]. Specifically, the RBS Calculator com-
putes novel RBS sequences with about 47% chance to show
the target strength within 2-fold [81].

Even though most of our current biological knowledge
is based on population-averaged data and central tendency
values, cell-to-cell variability is a crucial issue and can bring to
unpredictable system behaviour. Although the main aspects
of this point are described elsewhere [127] and are beyond
the scope of this review, we want to highlight that biological
noise can be detrimental for circuits function, even when
central tendency values are predictable. For this reason,
the full characterization of biological components should
also take into account cell-to-cell variability, which needs
to be propagated throughout an interconnected network of
well-characterized modules to obtain reliable quantitative
predictions of network output.

In this review, trial-and-error approaches involving the
random-based optimization of parts/circuit function have
also been briefly illustrated. These approaches rely on
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affordable parts construction methods and efficient high-
throughput-compatible screening methods to select the best
combination of genetic parts, while these approaches cannot
be efficiently applied when this condition does not persist.
The technology advances mentioned above could greatly
support the generation of large libraries to be screened
via appropriate high-throughput measurement techniques,
even without significant improvements in biological discov-
eries about context-dependent variability. However, while
the learning of predictability boundaries is expected to
contribute definitive predictive tools to handle the com-
plexity of biological systems, trial-and-error approaches do
not ensure the success of synthetic biology. In fact, large
numbers of candidate constructs can be built up, but high-
throughput measurement methods are not always available
for the quantitative evaluation of circuit activity and the
impact of pure trial-and-error approaches remains limited
to specific projects. For this reason, bottom-up approaches
urgently need to be refined to exploit the full potential of
synthetic biology. A mixture of prediction tools, even with
nonoptimal accuracy, and trial-and-error approaches could
rapidly boost the efficiency of biological engineering, by
providing a smaller search space than fully random-based
approaches.

Finally, intense interventions on genetic circuits have
been reported, which can provide considerable improve-
ments to the predictability of promoters, RBSs, architecture,
and retroactivity issues in different contexts. Since such
improvements are highly promising, these modifications
should be used in different studies to demonstrate their
benefits on large scale and they should be considered in all
the previously mentioned issues.
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