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The increasing number of objects orbiting the earth justifies the great attention and interest in the observation, spacecraft protection,
and collision avoidance. These studies involve different disturbances and resonances in the orbital motions of these objects
distributed by the distinct altitudes. In this work, objects in resonant orbital motions are studied in low earth orbits. Using the two-
line elements (TLE) of the NORAD, resonant angles and resonant periods associated with real motions are described, providing
more accurate information to develop an analytical model that describes a certain resonance. The time behaviors of the semimajor
axis, eccentricity, and inclination of some space debris are studied. Possible irregularmotions are observed by the frequency analysis
and by the presence of different resonant angles describing the orbital dynamics of these objects.

1. Introduction

The objects orbiting the Earth are classified, basically, in
low earth orbit (LEO), medium earth orbit (MEO), and
geosynchronous orbit (GEO).TheLEO region has a big quan-
tity of space debris and, consequently, most of the objects
are found in low earth orbits. Considering approximately
10000 cataloged objects around the earth, one can verify the
distribution of the objects as 7% of operational spacecraft,
22% of old spacecraft, 41% ofmiscellaneous fragments, 17% of
rocket bodies, and about 13% of mission-related objects. The
uncatalogued objects larger than 1 cm are estimated in some
value between 50000 and 600000 [1, 2].

In the last years, the study about space debris mitigation
in LEO region has been motivated by the increasing number
of this kind of object through the years. These aspects
considered in the studies englobe the observation, spacecraft
protection, and collision avoidance [3, 4].The space debris are
composed of aluminum from spacecraft structures, alumina
from solid rocket motor exhausts, zinc, and titanium oxides
from thermal control coatings and their sizes range from
several meters to a fraction of a micrometer in diameter [5].

Currently, the orbital motions of the cataloged objects
can be analyzed using the 2-line element set of the North
American Defense (NORAD) [6]. The TLE are composed of
seven parameters and epoch. These data can be compared,
for example, with the mathematical model of the propagator
used to describe themotion of the artificial satellite. A similar
study is done for the Brazilian satellite CBERS-1 in cooper-
ation with China. In this case, orbital perturbations due to
geopotential, atmospheric drag, solar radiation pressure, and
gravitational effects of the sun and the moon are considered
in the numerical integration of the orbit, and the results are
compared with the TLE data [7–9].

The space between the earth and the moon has several
artificial satellites and distinct objects in some resonance.
Synchronous satellites in circular or elliptical orbits have
been extensively studied in literature, due to the study of
resonant orbits characterizing the dynamics of these satellites
since the 60’s (see [10–22] and references here in). In some
of these works, resonant angles associated with the exact
resonance are considered in the numerical integration of
the equations of motion, with the purpose to describe the
resonance defined by the commensurability between the
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mean motion of the artificial satellite or space debris and the
earth’s rotation angular velocity. However, tesseral harmonics
𝐽𝑙𝑚 produce multiple resonances in the neighborhood of the
exact resonance, and some variations in the orbital motions
of objects are not described.

The main goal of this work is to define resonant angles
and resonant periods associated with real motions, providing
more accurate information to develop an analytical model
that describes a certain resonance. Amodel to detect resonant
objects and the subset of interesting resonant objects is then
presented. The time behavior of orbital elements, resonant
angles, and resonant periods of specified objects is analyzed.
In the studies about irregular motions, a new way to deter-
mine the frequency analysis is presented.

2. Resonant Objects Orbiting the Earth

In this section, the TLE data are used to verify if the objects
are in resonant motions and to define the resonance in which
the most of objects are found [6].

The present distribution of objects indicates the commen-
surability between the frequencies of the mean motion 𝑛 of
object and the earth’s rotation motion. See the histogram in
Figure 1.

In Figure 1, it is verified that most of the objects is in the
region 13 ≤ 𝑛 (rev/day) ≤ 15.

To study the resonant objects using the TLE data, a
criterium is established for the resonant period 𝑃res, by the
condition 𝑃res > 300 days. Note that the resonant period is
related to a resonant angle which can influence the orbital
motion of a particular artificial satellite. The value of 𝑃res
helps to understand the influence of each resonant angle,
and this knowledge can provide a more rigorous analytical
formulation of the problem. A minimum value is established
for the resonant period in order to define the main resonant
angles that compose an orbital motion. The resonant angles
are represented by the symbol 𝜙𝑙𝑚𝑝𝑞. 𝑃res is obtained by the
relation

𝑃res =
2𝜋

̇𝜙𝑙𝑚𝑝𝑞

, (1)

and ̇𝜙𝑙𝑚𝑝𝑞 is calculated from [10]as follows:

𝜙𝑙𝑚𝑝𝑞 (𝑀, 𝜔,Ω,Θ)

= (𝑙 − 2𝑝 + 𝑞)𝑀 + (𝑙 − 2𝑝) 𝜔

+ 𝑚 (Ω − Θ − 𝜆𝑙𝑚) + (𝑙 − 𝑚)
𝜋

2
,

(2)

where 𝑎, 𝑒, 𝐼,Ω,𝜔, and𝑀 are the classical Keplerian elements:
𝑎 is the semimajor axis, 𝑒 is the eccentricity, 𝐼 is the inclination
of the orbit plane with the equator, Ω is the longitude of the
ascending node, 𝜔 is the argument of pericentre and 𝑀 is
the mean anomaly, respectively; Θ is the Greenwich sidereal
time and 𝜆𝑙𝑚 is the corresponding reference longitude along
the equator. The term (𝑙 − 𝑚)(𝜋/2) in (2) is a correction
factor used in some representations of the earth gravitational
potential [23–26]. This term is constant and do not appear
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Figure 1: Histogram of the mean motion of the cataloged objects.

in 𝑑𝜙𝑙𝑚𝑝𝑞/𝑑𝑡 used in the calculations of the present work. So,
̇𝜙𝑙𝑚𝑝𝑞 is defined as

̇𝜙𝑙𝑚𝑝𝑞 = (𝑙 − 2𝑝 + 𝑞) 𝑀̇ + (𝑙 − 2𝑝) 𝜔̇ + 𝑚 (Ω̇ − Θ̇) . (3)

Substituting 𝑘 = 𝑙 − 2𝑝 in (3), ̇𝜙𝑘𝑚𝑞 is obtained as follows:

̇𝜙𝑘𝑚𝑞 = (𝑘 + 𝑞) 𝑀̇ + 𝑘𝜔̇ + 𝑚 (Ω̇ − Θ̇) . (4)

The terms 𝜔̇, Ω̇, and 𝑀̇ can be written considering the
secular effect of the zonal harmonic 𝐽2 as [7, 27]

𝜔̇ = −
3

4
𝐽2𝑛𝑜(

𝑎𝑒

𝑎𝑜
)

2 (1 − 5 cos2 (𝐼))

(1 − 𝑒2)
2

,

Ω̇ = −
3

2
𝐽2𝑛𝑜(

𝑎𝑒

𝑎𝑜
)

2 cos (𝐼)
(1 − 𝑒2)

2
,

𝑀̇ = 𝑛𝑜 −
3

4
𝐽2𝑛𝑜(

𝑎𝑒

𝑎𝑜
)

2 (1 − 3 cos2 (𝐼))

(1 − 𝑒2)
3/2

.

(5)

𝑎𝑒 is the earth mean equatorial radius and 𝑎𝑒 = 6378.140 km,
𝐽2 is the second zonal harmonic, 𝐽2 = 1.0826 × 10

−3.
The term Θ̇, in rad/day, is

Θ̇ ≈ 1.00273790926 × 2𝜋. (6)

In order to use orbital elements compatible with the way
in which two-line elements were generated, some corrections
are done in the mean motion of the TLE data. Considering
𝑛1 as the mean motion of the 2-line, the semimajor axis 𝑎1 is
calculated [7]

𝑎1 = (
√𝜇

𝑛1
)

2/3

, (7)

where 𝜇 is the earth gravitational parameter, 𝜇 = 3.986009 ×

10
14m3/s2. Using 𝑎1, (7), the parameter 𝛿1 is calculated by (8)

[7]

𝛿1 =
3

4
𝐽2
𝑎
2

𝑒

𝑎2
1

(3 cos2 (𝐼) − 1)

(1 − 𝑒2)
3/2

. (8)
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Table 1: 2-line data of objects orbiting the earth.

File Number of data Number of objects
𝑎𝑙𝑙𝑑𝑎𝑡𝑎 2011 045 15360 9745

Now, a new semimajor axis 𝑎𝑜, used in the calculations of
the resonant period, is defined using 𝛿1 from (8) [7]

𝑎𝑜 = 𝑎1 [1 −
1

3
𝛿1 − 𝛿

2

1
−
134

81
𝛿
3

1
] , (9)

and the new mean motion 𝑛𝑜, used in the calculations, is
found considering the semimajor axis corrected 𝑎𝑜

𝑛𝑜 = √
𝜇

𝑎3
𝑜

. (10)

Now, (1) to (10) can be used in a Fortran program to
correct the observational data and to provide resonant angles
and resonant periods related to orbital motions. The file
analyzed is “𝑎𝑙𝑙𝑑𝑎𝑡𝑎 2011 045” from the website Space Track
[6], and it corresponds to February, 2011. In Table 1, the
number of data and the number of objects are specified.

The simulation identified objects with resonant period
greater than 300 days. Several values of the coefficients, 𝑘,
𝑞, and 𝑚 are considered in (2) producing different resonant
angles to be analyzed by (1). See Table 2 showing details about
the results of the simulation.

Note that Table 2 shows only the data satisfying the
established criterium, 𝑃res > 300 days. The results show the
resonant angles and resonant periods which compose the
orbital motions of the resonant objects. Table 3 shows values
of the coefficient𝑚 and the correspondent number of objects.
It is possible to verify that most of the orbital motions are
related to the coefficient 𝑚 = 14 considering the value of the
semimajor axis up to 15000 km.

Comparing the number of objects satisfying the condi-
tion of 𝑃res > 300 days in the different regions, 𝑎 < 15000 km
and 𝑎 ≥ 15000 km, it is verified that about 62.37% of the
resonant objects has 𝑎 < 15000 km. See this information in
Table 4.

These studies allow to investigate the real influence of
the resonance effect in the orbital dynamics of artificial
satellites and space debris.The number of resonant objects in
comparison with the total number of objects in the TLE data
shows the great influence of the commensurability between
themeanmotion of the object and the earth’s rotation angular
velocity in its orbits. In this way, a more detailed study about
the resonant period and the resonant angles is necessary.

In the next section, the orbital motions of some space
debris in resonance are studied.

3. Study of Objects in 14:1 Resonance

Considering the results of the simulations shown in the
second section, some cataloged space debris is studied with
respect to the time behavior of the semi-major axis, eccen-
tricity, inclination, resonant period, resonant angle, and the
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Figure 2: Semimajor axis versus resonant period of objects satisfy-
ing the condition 𝑃res > 300 days.The objects studied in LEO region
are identified by the numbers 325, 546, 2986, and 4855.

frequency analysis of the orbital elements. These data are
analyzed in this section observing the possible regular or
irregular orbital motions.

Figure 2 shows the semimajor axis versus resonant period
of objects satisfying the condition 𝑃res > 300 days. The
objects are distributed by the value of semimajor axis in three
different regions: (1) 𝑎 < 15000 km, (2) 15000 km ≤ 𝑎 <

40000 km, and (3) 𝑎 ≥ 40000 km.
Figure 2 shows some objects around the 1:1, 2:1 and

14:1 resonances. The orbital motions of these objects are
influenced by the resonance for several years and possible
irregular motions can be confined in a region delimited for
resonant angles with biggest resonant periods. In order to
study the orbital motions of these objects, four cataloged
space debris are analyzed in the LEO region; see Figure 2.
From the TLE data, objects are identified by the numbers 325,
546, 2986, and 4855.These objects have been chosen because
they show resonant period 𝑃res > 10000 days.

Figures 3, 4, 5, and 6 show the time behavior of the
semimajor axis, eccentricity, and inclination of the objects
325, 546, 2986, and 4855, and the frequency analysis of these
orbital elements.

Usually, in the studies of the dynamical systems with
the purpose to identify chaos, the frequency analysis is
considered for a long time. But, in low earth orbits, a big
number of cataloged objects have theirmotions influenced by
different resonant periods and unknown objects can collide
with each other providing more unpredictability in their
motions. In this case, the frequency analysis can be more
appropriate for a short time.

Several authors, [28–33], also use the frequency analysis
to study the possible regular or irregular orbits in different
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Figure 3: Orbital motion of object 325 corresponding to January–September, 2011: (a) time behavior of the semimajor axis, (b) power
spectrum of the semimajor axis, (c) time behavior of the eccentricity, (d) power spectrum of the eccentricity, (e) time behavior of the
inclination, and (f) power spectrum of the inclination.
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Figure 4: Orbital motion of object 546 corresponding to January–September, 2011: (a) time behavior of the semimajor axis, (b) power
spectrum of the semimajor axis, (c) time behavior of the eccentricity, (d) power spectrum of the eccentricity, (e) time behavior of the
inclination, and (f) power spectrum of the inclination.
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Figure 5: Orbital motion of object 2986 corresponding to January–September, 2011:(a) time behavior of the semimajor axis (b) power
spectrum of the semimajor axis, (c) time behavior of the eccentricity, (d) power spectrum of the eccentricity, (e) time behavior of the
inclination, and (f) power spectrum of the inclination.
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Figure 6: Orbital motion of object 4855 corresponding to January–September, 2011: (a) time behavior of the semimajor axis, (b) power
spectrum of the semimajor axis, (c) time behavior of the eccentricity, (d) power spectrum of the eccentricity, (e) time behavior of the
inclination, and (f) power spectrum of the inclination.
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Table 2: Results of the simulation: objects in resonant orbital motions.

Number of data Number of
different objects Coefficient 𝑘 Coefficient 𝑞 Coefficient𝑚

3180 1276 −50 ≤ 𝑘 ≤ 50 −5 ≤ 𝑞 ≤ 5 1 ≤ 𝑚 ≤ 50

Table 3: Number of objects according to the number of the
coefficient 𝑚, considering the value of the semimajor axis up to
15000 km.

𝑚 Number of objects
7 2
8 1
9 3
10 1
11 3
12 20
13 31
14 351
15 65
16 4
18 3
20 1
21 2
22 2
23 2
24 10
25 93
26 19
27 66
28 179
29 97
30 31
31 13
32 5
33 2
34 1
35 4
36 5
37 42
38 14
39 14
40 24
41 186
42 116
43 114
44 52
45 25
46 8
47 4
48 6
49 22
50 33

dynamical systems. A brief description of the frequency
analysis involving the Fast Fourier Transforms (FFT) is
presented in what follows. See this method with more details
in [28, 29, 33].

Generally, the frequency analysis is applied in the output
of the numerical integration in the study of dynamical
systems. However, in the present work, this analysis is used

Table 4: Number and percentage of objects satisfying the condition
𝑃res > 300 days.

𝑎 < 15000 km 15000 km ≤ 𝑎 <

40000 km 𝑎 ≥ 40000 km

1276 331 439
62.37% 16.18% 21.46%

in the real data of the orbital motions of the objects 325, 546,
2986, and 4855, from the TLE data of the NORAD [6].

For regular motions, the orbital elements oe(𝑡) show a
dependence on time as follows [28, 29, 33]:

oe (𝑡) = ∑

ℎ

𝐴ℎ𝑒
2𝜋𝑖hf𝑡

, (11)

where 𝐴ℎ represent the amplitudes, h ∈ Z𝑁 and f is a fre-
quency vector.The components of f compose the fundamen-
tal frequencies of motion, and the spectral decomposition of
the orbital motion is obtained from the Fourier transform
when the independent frequencies are constant in the course
of time [33]. It is possible to observe that f depends on the
kind of trajectory [28].

The same numerical procedure is done for irregular and
regular motions. The difference in behavior of these orbital
motions is used to identify the two kinds of trajectories.
The power spectrum of regular motion can be distinguished
because it generally has a small number of frequency com-
ponents produced by the Fourier transform. The irregular
trajectories are not conditionally periodic and they do not
compose an invariant tori. In this way, the Fourier transform
of an orbital element, for example, is not a sum over Dirac
𝛿-functions, and consequently the power spectrum is not
discrete for irregular motions [28, 33].

Observing the time behavior of the orbital elements of
the objects 325, 546, 2986, and 4855 in Figures 3, 4, 5, and 6,
one can verify possible regular and irregular motions in the
trajectories of these space debris. The time behavior of the
inclination shows irregularities. Analyzing object 325, note
that, in 200 days, a fast increase in the inclination occurs,
but, this variation is about 0.01∘ and it may be related to some
disturbance added to the motion.

The power spectrumof the orbital elements is not discrete
and they have a big number of frequency components in
Figures 3 to 6. So, it is also important to observe if the orbital
motion is influenced by different resonant angles.

Table 5 shows the resonant angles related to the orbital
motions of objects 325, 546, 2986, and 4855 corresponding to
the period January–September, 2011. Observing Table 5, one
can verify that the orbital dynamics of objects 2986 and 4855
are influenced by some resonant angles, while for the objects
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325 and 546, several resonant angles influence their orbits
simultaneously.

If the commensurability between the orbital motions of
the object and the earth is defined by the parameter 𝛼 and
by the condition 𝛼 = (𝑘 + 𝑞)/𝑚, one can say that the exact
14:1 resonance is defined by the condition 𝛼 = 1/14. This way,
by analyzing Table 5, it is verified that the motions of objects
325 and 2986 are influenced by the exact 14:1 resonance,
𝛼 = 1/14, while the objects 546 and 4855 are influenced by
resonant angles in the neighborhood of the exact resonance.
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Figure 9: Time behavior of the resonant period corresponding to
the orbital motion of object 2986.
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Figure 10: Time behavior of the resonant period corresponding to
the orbital motion of object 4855.

The condition 𝛼 for object 546 is 𝛼 = 3/43 and for object 4855
is 𝛼 = 3/41.

Figures 7, 8, 9, and 10 show the time behavior of
the resonant period corresponding to the resonant angles
presented in Table 5.

Analyzing the time behavior of the resonant period in
Figures 7, 8, 9, and 10, it is verified that the resonant angles
remain confined for a few days.The term confinedmeans that
the orbital motion is inside a region delimited for resonant
angles with biggest resonant periods. The orbital motion of
object 546 has resonant angles which satisfy the established
criterium 𝑃res > 300 days for 70 days and, consequently, the
orbital dynamics of this object may be losing the influence
of the 14:1 resonance. Figures 9 and 10, corresponding to the
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Figure 11: Time behavior of ̇𝜙𝑘𝑚𝑞 corresponding to the orbital
motion of object 325.
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Figure 12: Time behavior of ̇𝜙𝑘𝑚𝑞 corresponding to the orbital
motion of object 546.

objects 2986 and 4855, show a tendency to not remain in
resonance, because the resonant period decreases fromvalues
greater than 10000 days to values smaller than 500 days. The
orbital motion of object 325 is more influenced by the 14:1
resonance and this fact can be observed by the time behavior
of ̇𝜙𝑘𝑚𝑞, Figure 11.

To continue the analysis about the irregular orbital
motions, the time behavior of the ̇𝜙𝑘𝑚𝑞 is studied verifying
if different resonant angles describe the orbital dynamics of
these objects at the same moment. This fact can indicate
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Figure 13: Time behavior of ̇𝜙𝑘𝑚𝑞 corresponding to the orbital
motion of object 2986.
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Figure 14: Time behavior of ̇𝜙𝑘𝑚𝑞 corresponding to the orbital
motion of object 4855.

irregular orbits requiring a full systemwith all resonant angles
as described in Table 5. Figures 11, 12, 13, and 14 show the time
behavior of the ̇𝜙𝑘𝑚𝑞 corresponding to the resonant angles
presented in Table 5.

Analyzing the time behavior of the resonant angles ̇𝜙𝑘𝑚𝑞
in Figures 11, 12, 13, and 14, it is possible to observe resonant
angles in the exact 14:1 resonance: 𝜙1 14 0, 𝜙6 42 −3, 𝜙4 28 −2,
𝜙2 14 −1, 𝜙7 42 −4, 𝜙5 28 −3, 𝜙3 14 −2, 𝜙8 42 −5, 𝜙6 28 −4,and 𝜙4 14 −3 and
𝜙7 28 −5 (object 325), 𝜙−1 28 3, and 𝜙−1 42 4 (object 2986) and
resonant angles in the neighborhood of the 14:1 resonance:
𝜙3 43 0, 𝜙4 43 −1, 𝜙5 43 −2, 𝜙6 43 −3, and 𝜙7 43 −4 and 𝜙8 43 −5 (object
546), 𝜙7 41 −4, and 𝜙8 41 −5 (object 4855). In Figure 11, one can
verify that all resonant angles have the same 𝛼, but different
values for (𝑘+𝑞) and𝑚 appear in the conditions𝛼 = (𝑘+𝑞)/𝑚,
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Table 5: Resonant angles 𝜙𝑘𝑚𝑞 related to the orbital motions of
objects 325, 546, 2986, and 4855.

Object Coefficient 𝑘 Coefficient𝑚 Coefficient 𝑞
325 1 14 0
325 6 42 −3
325 4 28 −2
325 2 14 −1
325 7 42 −4
325 5 28 −3
325 3 14 −2
325 8 42 −5
325 6 28 −4
325 4 14 −3
325 7 28 −5
546 3 43 0
546 4 43 −1
546 5 43 −2
546 6 43 −3
546 7 43 −4
546 8 43 −5
2986 −1 28 3
2986 −1 42 4
2986 0 14 1
4855 7 41 −4
4855 8 41 −5

𝛼 = 1/14, 𝛼 = 2/28, and 𝛼 = 3/42. The time behavior
of curves with 𝛼 = 2/28 are similar and different of curves
with 𝛼 = 3/42 or 𝛼 = 1/14. The orbital motion of object
546 is governed by distinct resonant angles, but, after seventy
days, the influence of resonant effects decreases or disappears.
Objects 325 and 2986 have their orbital motions influenced
by the exact 14:1 resonance and they need a full system
with different resonant angles which compose their motions.
Otherwise, the orbital motion of object 4855 is defined for
resonant angles separately, which can be defined as a regular
orbit.

The results and discussions show the complexity in the
orbital dynamics of these objects caused by the resonance
effects. Furthermore, the increasing number of space debris
and collisions between them can cause big problems for
artificial satellites missions.

4. Conclusions

In this work, the orbital dynamics of synchronous space
debris are studied. From the TLE data of the NORAD,
objects orbiting the earth in resonant orbital motions are
investigated.

Results show that some objects around the exact 1:1,
2:1, and 14:1 resonances remain in resonance for a long
time. In other words, the orbital motions will be influenced
for resonant angles for several years and possible irregular
motions can be confined in a region delimited for resonant
angles with biggest resonant periods.

Analyzing the cataloged objects satisfying the established
criterium of the resonant period greater than 300 days, four
space debris (325, 546, 2986, and 4855) are studied observing
the irregular characteristics in their orbits.The time behavior
of the orbital elements and the respective frequency analysis
are used to verify the orbits of these objects.

Several resonant angles influence, simultaneously, the
orbital motions of objects 325 and 2986. The time behavior
of the inclination and the frequency analysis confirm the
irregularities in their orbits. The orbital dynamics of object
546 is firstly influenced by several resonant angles in the
neighborhood of the 14:1 resonance, but, after some days, the
regular characteristic in its orbit seems to dominate.The time
behavior of the ̇𝜙𝑘𝑚𝑞 of object 4855 shows resonant angles
separately indicating a regular orbit.

The resonant orbital dynamics of artificial satellites and
space debris can be described using observational data. Res-
onant angles which compose the orbital motions are defined
before the development of analytical model, providing more
accuracy. Using the same procedure shown in the present
work, the resonant periods associated with resonant angles
can be determined and the study about any resonance,
involving the commensurability between themeanmotion of
object and the earth’s rotation motion, can be described with
more details.

Using real data, the time behavior of orbital elements
allows to validate by comparison several analytical models
describing perturbations in orbital motions, like atmospheric
drag, solar radiation pressure, gravitational effects of the sun
and the moon, for example. The frequency analysis from
observational data is a new way to verify unstable regions.

In a future work, the method presented in this paper
will be used to determine all resonant angles that influ-
ence a determined orbital motion and the analytical model
presented in a previous paper [19]; it will be necessary
to propagate the orbit, using each resonant angle and the
correspondent resonant period previously determined. The
description of the resonance problem is tending to a more
understandable way.
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