
MIT Open Access Articles

Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Zetsche, Bernd et al. “Multiplex Gene Editing by CRISPR–Cpf1 Using a Single crRNA 
Array.” Nature Biotechnology 35, 1 (December 2016): 31–34 © 2017 Nature America, Inc, part of 
Springer Nature

As Published: http://dx.doi.org/10.1038/NBT.3737

Publisher: Nature Publishing Group

Persistent URL: http://hdl.handle.net/1721.1/112728

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/112728
http://creativecommons.org/licenses/by-nc-sa/4.0/


Multiplex gene editing by CRISPR-Cpf1 through autonomous 
processing of a single crRNA array

Bernd Zetsche#1,2,3,4,5, Matthias Heidenreich#1,2,3,4, Prarthana Mohanraju#6, Iana 
Fedorova1,2,3,4,9,10, Jeroen Kneppers1,6, Ellen M. DeGennaro1,7, Nerges Winblad1,2,3,4, 
Sourav R. Choudhury1,2,3,4, Omar O. Abudayyeh1,2,3,4,7, Jonathan S. Gootenberg1,2,3,4,8, 
Wen Y. Wu6, David A. Scott1,2, Konstantin Severinov9,11,12, John van der Oost6,†, and Feng 
Zhang1,2,3,4,†

1 Broad Institute of MIT and Harvard, Cambridge, MA 02142 2 McGovern Institute for Brain 
Research, Massachusetts Institute of Technology, Cambridge, MA 02139 3 Department of Brain 
and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 4 

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 
02139 5 Department of Developmental Pathology, Institute of Pathology, Bonn Medical School, 
Sigmund Freud Street 25, 53127 Bonn, Germany 6 Laboratory of Microbiology, Department of 
Agrotechnology and Food Sciences, Wageningen University, Stippeneng 4, 6708 WE 
Wageningen, Netherlands 7 Harvard-MIT Division of Health Sciences and Technology, 
Massachusetts Institute of Technology, Cambridge, MA 02139 8 Department of Systems Biology, 
Harvard Medical School, Boston, MA 02115 9 Skolkovo Institute of Science and Technology, 
Skolkovo, 143025, Russia. 10 Peter the Great St.Petersburg Polytechinc University, St. 
Petersburg, 195251, Russia 11 Waksman Institute for Microbiology, Rutgers, The State University 
of New Jersey, Piscataway, NJ 08854, USA 12 Institute of Molecular Genetics, Russian Academy 
of Sciences, Moscow, 123182, Russia

# These authors contributed equally to this work.

Although multiplex gene editing is possible with Cas9, it requires relatively large constructs 

or simultaneous delivery of multiple plasmids 7-11, both of which are problematic for 

multiplex screens or in vivo applications. In contrast, Cpf1 only requires one Pol III 

promoter to drive several small crRNAs (39nt per crRNA). We confirmed that Cpf1 alone is 

sufficient for array processing1, 2 using an artificial CRISPR pre-crRNA array consisting of 

four spacers separated by direct repeats (DRs) from the CRISPR locus of Francisella 
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harnessed Cpf1, the effector nuclease of a novel type V-A CRISPR system, for genome editing in mammalian cells. Cpf1 does not 
require additional factors for CRISPR RNA (crRNA) processing, providing a simple route to multiplex targeting. Here, we show that 
two Cpf1 orthologs are capable of multiplex gene editing in mammalian cells as well as in the mouse brain by using a customized 
single CRISPR array. 
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novicida (FnCpf1) and two Cpf1 orthologs with activity in mammalian cells, 

Acidaminococcus Cpf1 (AsCpf1) and Lachnospiraceae Cpf1 (LbCpf1) (Figure 1b and 
Supplementary figure 1). Small RNAseq showed that AsCpf1 cleavage products correlate 

to fragments resulting from cuts at the 5’ end of DR hairpins, identical to the cleavage 

pattern we observed in E.coli heterologously expressing FnCpf1 CRISPR systems1 (Figure 
1c).

We further validated these results by generating AsCpf1 mutants that are unable to process 

arrays. Guided by the crystal structure of AsCpf13, we mutated five conserved amino acid 

residues likely to disrupt array processing (H800A, K809A, K860A, F864A, and R790A) 3. 

All mutations interfered with pre-crRNA processing but not DNA cleavage activity in vitro 
(Figure 1d and Supplementary figure 2a, b), an effect that was also observed for FnCpf12. 

AsCpf1 recognizes specific nucleotides at the 5’ flank of the DR stem loop. Substitution of 

these nucleotides weakens or abolishes RNA cleavage (Supplementary figure 3a). Dosage 

tests with the five AsCpf1 mutants revealed that mutants K809A, K860A, F864A, and 

R790A show pre-crRNA processing when used at high concentration (Supplementary 
figure 3b) or for extended incubation times (Supplementary figure 3c), but H800A was 

inactive regardless of dose and time.

We next tested if this mutant retains DNase activity in human embryonic kidney (HEK) 

293T cells using three guides. Insertion/deletion (indel) frequency at the DNMT1 and 

GRIN2b loci were identical between wild-type and H800A AsCpf1, whereas indel 

frequencies at the VEGFA locus were higher in cells transfected with wild-type AsCpf1, 

demonstrating that the RNA and DNA cleavage activity can be separated in mammalian 

cells (Figure 1e).

Cpf1 mediated RNA cleavage needs to be considered when designing lenti-virus vectors for 

simultaneous expression of nuclease and guide (Figure 2f). Lenti virions carry a (+) strand 

RNA copy of the sequence flanked by long terminal repeats (LTR), allowing Cpf1 to bind 

and cleave at DR sequences. Hence, reversing the orientation of the DR is expected to result 

in (+) strand lenti RNAs not susceptible to Cpf1 mediated cleavage. We designed a lenti 

vector encoding AsCpf1 and a crRNA expression cassette. We transduced HEK293T cells 

with a MOI (multiplicity of infection) of <0.3 and analyzed indel frequencies in puromycin 

selected cells 10 days post infection. Using guides encoded on a reversed expression cassette 

targeting DNMT1, VEGFA, or GRIN2b resulted in robust indel formation for each targeted 

gene (Figure 2g).

We leveraged the simplicity of Cpf1 crRNA maturation to achieve multiplex genome editing 

in HEK293T cells using customized CRISPR arrays. We chose four guides targeting 

different genes (DNMT1, EMX1, VEGFA, and GRIN2b) and constructed three arrays with 

variant DR and guide lengths for expression of pre-crRNAs (Figure 2a). Indel events were 

detected at each targeted locus in cells transfected with array-1 or -2. However, the crRNA 

targeting EMX1 resulted in indel frequencies of <2% when expressed from array-3. Overall, 

array-1 performed best, with all guides showing indel levels comparable to those mediated 

by single crRNAs (Figure 2b). Furthermore, small RNAseq confirmed that autonomous, 

Cpf1-mediated pre-crRNA processing occurs in mammalian cells (Figure 2c). Using arrays 
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with guides in different orders resulted in similar indel frequencies, suggesting that 

positioning within an array is not crucial for activity (Supplementary figure 4a, b).

To confirm that multiplex editing occurs within single cells, we generated AsCpf1-P2A-GFP 

constructs to enable fluorescence-activated cell sorting (FACS) of transduced single cells 

(Figure 2d) and clonal expansion. We used next generation deep sequencing (NGS) to 

compare edited loci within clonal colonies derived from cells transfected with either pooled 

single guides or array-1. Focusing on targeted genes edited at every locus (indels ≥95%) 

shows that multiplex editing occurs more frequently in colonies transfected with array-1 

(6.4% all targets, 12.8% three targets, 48.7% two targets) than in pooled transfection (2.4% 

all targets, 3.6% three targets, 11.9% two targets).

We next tested multiplex genome editing in neurons using AsCpf1. We designed a gene-

delivery system based on adeno-associated viral vectors (AAVs) for expression of AsCpf1. 

We generated a dual vector system in which AsCpf1 and the CRISPR-Cpf1 array were 

cloned separately (Figure 2f). We constructed a U6 promoter-driven Cpf1 array targeting the 

neuronal genes Mecp2, Nlgn3, and Drd1. This plasmid also included an green fluorescent 

protein (GFP) fused to the KASH nuclear transmembrane domain 4 to enable FACS of 

targeted cell nuclei 5.

We first transduced mouse primary cortical neurons in vitro and observed robust expression 

of AsCpf1 and GFP-KASH one week after viral delivery. SURVEYOR nuclease assay on 

purified neuronal DNA confirmed indel formations in all three targeted genes 

(Supplementary figure 5). Next, we tested whether AsCpf1 can be expressed in the brains 

of living mice for multiplex genome editing in vivo. We stereotactically injected our dual 

vector system in a 1:1 ratio into the hippocampal dentate gyrus (DG) of adult male mice. 

Four weeks after viral delivery we observed robust expression of AsCpf1 and GFP-KASH in 

the DG (Figure 2g, h). Consistent with previous studies 5, 6, we observed ~75% co-

transduction efficiency of the dual viral vectors (Supplementary figure 2c). We isolated 

targeted DG cell nuclei by FACS (Supplementary figure 4) and quantified indel formation 

using NGS. We found indels in all three targeted loci with ~23%, ~38%, and ~51% indel 

formation in Mecp2, Nlgn3, and Drd1, respectively (Supplementary figure 4d, e). We 

quantified the effectiveness of biallelic disruption of the autosomal gene Drd1 and found 

~47% of all sorted nuclei (i.e. ~87% of all Drd1-edited cells) harbored biallelic 

modifications (Figure 2i). Next, we quantified the multiplex targeting efficiency in single 

neuronal nuclei. Our results show that ~17% of all transduced neurons were modified in all 

three targeted loci (Figure 2j). Taken together, our results demonstrate the effectiveness of 

AAV-mediated delivery of AsCpf1 into the mammalian brain and simultaneous multi-gene 

targeting in vivo using a single array transcript.

Taken together, these data highlight the utility of Cpf1 array processing in designing 

simplified systems for in vivo multiplex gene editing. Although multiplex gene editing is 

possible with Cas9, it requires relatively large constructs or simultaneous delivery of 

multiple plasmids 7-11, both of which are problematic for multiplex screens or in vivo 
applications. In contrast, Cpf1 only requires one Pol III promoter to drive several small 

crRNAs (39nt per crRNA). Hence, this system has the potential to simplify guide RNA 
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delivery for many genome editing applications where targeting of multiple genes is 

desirable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cpf1 mediated processing of pre-crRNA is independent of DNA cleavage
(a) Schematic of pre-crRNA processing for Cas9 and Cpf1. Cleavage sites indicated with red 

triangles. (b) In vitro processing of FnCpf1 pre-crRNA transcript (80 nM) with purified 

AsCpf1 or LbCpf1 protein (~320 nM), cropped gel image. (c) RNAseq analysis of FnCpf1 

pre-crRNA cleavage products, as shown in (b). A high fraction of sequence reads smaller 

than 65nt are cleavage products of spacers flanked by DR sequences, cropped gel images. 

(d) Pre-crRNA (top) and DNA cleavage (bottom) mediated by AsCpf1 point mutants. 

H800A, K809A, K860A, F864A, and R790A fail to process precrRNA but retain DNA 
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cleavage activity in vitro. 330 nM pre-crRNA was cleaved with 500 nM Cpf1 in 15 min and 

25 nM DNA was cleaved with 165 nM Cpf1 in 30 min. (e) Indel frequencies mediated by 

AsCpf1H800A are comparable to wt AsCpf1, bars are mean of 3 technical replicates from 

one experiment, error bars are SEM. (Student t-test; ns = not significant; ** = p-value 

0.003). (f) Schematic of lenti-Cpf1 construct with the U6::DR cassette in different 

orientations (top and middle), (+)-strand lenti RNA with recognizable DRs are susceptible to 

Cpf1 mediated degradation, preventing functional virion formation. Schematic of lenti-

AsCpf1 (pY108) construct (bottom). (g) Indel frequencies analyzed by SURVEYOR 

nuclease assay after puromycin selection 10 days after transduction with lenti-AsCpf1 in 

HEK cells, bars are mean of 2 or 3 individual infections, error bars are SEM. U6, Pol III 

promoter; CMV, cytomegalovirus promoter; NLS, nuclear localization signal; HA, 

hemagglutinin tag; DR, direct repeat sequence; P2A, porcine teschovirus-1 2A self-cleaving 

peptide; LTR, long terminal repeat; WPRE, Woodchuck Hepatitis virus posttranscriptional 

regulatory element.
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Figure 2. Cpf1-mediated multiplex gene editing in mammalian cells and mouse brain
(a) Schematic of multiplex gene editing with AsCpf1, using a single plasmid approach. (b) 
Genome editing at four different genomic loci mediated by AsCpf1 with different versions 

of artificial CRISPR arrays (array-1, crRNAs in their mature form (19nt DR with 23nt 

guide); array-2, crRNAs are in an intermediate form (19nt DR with 30nt guide); array-3 

crRNAs are in their unprocessed form (35nt DR with 30nt guides)). Indels were analyzed by 

SURVEYOR nuclease assay 3 days post transfection; bars are mean of two individual 

experiments with 3 to 5 technical replicates, error bars are SEM. (c) Small RNAseq reads 
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from HEK cells transfected with AsCpf1 and array-1 show fragments corresponding to 

mature crRNA for each of the four guides. (d) Schematic for analysis of indel events in 

clonal colonies 48 hours after transient transfection. (e) Quantification of indel events 

measured by NGS in clonal colonies from HEK cells transiently transfected with pooled 

single guide plasmids or plasmid carrying array-1. Colonies were expanded for 10 days after 

sorting. Each column represents one clonal colony; blue rectangles indicate target genes 

with all alleles edited. (f) Schematic of AAV vector design for multiplex gene editing. 

Bottom: grey rectangles, direct repeat; diamonds, spacer (red: Mecp2, orange: Nlgn3, green: 

Drd1). (g) Immunostaining of dorsal DG 4 weeks after stereotactic AAV injection 

(Representative image of n = 4 mice). Brain sections were co-stained with anti-HA (red), 

anti-GFP (green) and anti-NeuN (magenta) antibodies. Nuclei were labeled with DAPI 

(blue). Scale bar: 100 um. (h) Western blot analysis of DG expressing HA-AsCpf1 and GFP-

KASH (Representative blot from n = 4 mice). (i) Fraction of mono- and biallelic 

modifications of autosomal gene Drd1 is shown (Mecp2 and Nlgn3: x-chromosomal). (j) 
Analysis of multiplexing efficiency in individual cells. ITR, inverted terminal repeat; spA, 

synthetic polyadenylation signal; hSyn1, human synapsin 1 promoter; ANC1, Syne 

Homology nuclear transmembrane domain; hGH pA, human growth hormone 

polyadenylation signal;
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