ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Revealing Correlation of Valence State with Nanoporous Structure in Cobalt Catalyst Nanoparticles by In Situ Environmental TEM

View Author Information
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States,
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
*Address correspondence to [email protected]
Cite this: ACS Nano 2012, 6, 5, 4241–4247
Publication Date (Web):April 11, 2012
https://doi.org/10.1021/nn3007652
Copyright © 2012 American Chemical Society

    Article Views

    2593

    Altmetric

    -

    Citations

    69
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Simultaneously probing the electronic structure and morphology of materials at the nanometer or atomic scale while a chemical reaction proceeds is significant for understanding the underlying reaction mechanisms and optimizing a materials design. This is especially important in the study of nanoparticle catalysts, yet such experiments have rarely been achieved. Utilizing an environmental transmission electron microscope equipped with a differentially pumped gas cell, we are able to conduct nanoscopic imaging and electron energy loss spectroscopy in situ for cobalt catalysts under reaction conditions. Studies reveal quantitative correlation of the cobalt valence states with the particles’ nanoporous structures. The in situ experiments were performed on nanoporous cobalt particles coated with silica, while a 15 mTorr hydrogen environment was maintained at various temperatures (300–600 °C). When the nanoporous particles were reduced, the valence state changed from cobalt oxide to metallic cobalt and concurrent structural coarsening was observed. In situ mapping of the valence state and the corresponding nanoporous structures allows quantitative analysis necessary for understanding and improving the mass activity and lifetime of cobalt-based catalysts, for example, for Fischer–Tropsch synthesis that converts carbon monoxide and hydrogen into fuels, and uncovering the catalyst optimization mechanisms.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supplementary figures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 69 publications.

    1. Shahar Dery, Barak Friedman, Hadar Shema, Elad Gross. Mechanistic Insights Gained by High Spatial Resolution Reactivity Mapping of Homogeneous and Heterogeneous (Electro)Catalysts. Chemical Reviews 2023, 123 (9) , 6003-6038. https://doi.org/10.1021/acs.chemrev.2c00867
    2. Zhuang Zeng, Zhuoshi Li, Li Kang, Xiaoxue Han, Zouxuan Qi, Shaoxia Guo, Junhu Wang, Alexandre Rykov, Jing Lv, Yue Wang, Xinbin Ma. A Monodisperse ε′-(CoxFe1–x)2.2C Bimetallic Carbide Catalyst for Direct Conversion of Syngas to Higher Alcohols. ACS Catalysis 2022, 12 (10) , 6016-6028. https://doi.org/10.1021/acscatal.2c01078
    3. Ofentse A. Makgae, Tumelo N. Phaahlamohlaka, Benzhen Yao, Manfred E. Schuster, Thomas J. A. Slater, Peter P. Edwards, Neil J. Coville, Emanuela Liberti, Angus I. Kirkland. Atomic Structure and Valence State of Cobalt Nanocrystals on Carbon under Syngas Versus Hydrogen Reduction. The Journal of Physical Chemistry C 2022, 126 (14) , 6325-6333. https://doi.org/10.1021/acs.jpcc.2c00482
    4. Shahar Dery Elad Gross . IR Nanospectroscopy in Catalysis Research. , 147-173. https://doi.org/10.1021/bk-2021-1396.ch007
    5. Qian Jiang, Wen Luo, Yuang Piao, Hiroaki Matsumoto, Xi Liu, Andreas Züttel, Ksenia Parkhomenko, Cuong Pham-Huu, Yuefeng Liu. Surface Oxygenate Species on TiC Reinforce Cobalt-Catalyzed Fischer–Tropsch Synthesis. ACS Catalysis 2021, 11 (13) , 8087-8096. https://doi.org/10.1021/acscatal.1c00150
    6. Yao Yang, Yin Xiong, Rui Zeng, Xinyao Lu, Mihail Krumov, Xin Huang, Weixuan Xu, Hongsen Wang, Francis J. DiSalvo, Joel. D. Brock, David A. Muller, Héctor D. Abruña. Operando Methods in Electrocatalysis. ACS Catalysis 2021, 11 (3) , 1136-1178. https://doi.org/10.1021/acscatal.0c04789
    7. Yuang Piao, Qian Jiang, Hao Li, Hiroaki Matsumoto, Jinsheng Liang, Wei Liu, Cuong Pham-Huu, Yuefeng Liu, Fei Wang. Identify Zr Promotion Effects in Atomic Scale for Co-Based Catalysts in Fischer–Tropsch Synthesis. ACS Catalysis 2020, 10 (14) , 7894-7906. https://doi.org/10.1021/acscatal.0c01874
    8. Mahmood Rahmati, Mohammad-Saeed Safdari, Thomas H. Fletcher, Morris D. Argyle, Calvin H. Bartholomew. Chemical and Thermal Sintering of Supported Metals with Emphasis on Cobalt Catalysts During Fischer–Tropsch Synthesis. Chemical Reviews 2020, 120 (10) , 4455-4533. https://doi.org/10.1021/acs.chemrev.9b00417
    9. Robert W. Mitchell, David C. Lloyd, Leon G. A. van de Water, Peter R. Ellis, Kirsty A. Metcalfe, Connor Sibbald, Laura H. Davies, Dan I. Enache, Gordon J. Kelly, Edward D. Boyes, Pratibha L. Gai. Effect of Pretreatment Method on the Nanostructure and Performance of Supported Co Catalysts in Fischer–Tropsch Synthesis. ACS Catalysis 2018, 8 (9) , 8816-8829. https://doi.org/10.1021/acscatal.8b02320
    10. Brendan Hillary, Putla Sudarsanam, Mohamad Hassan Amin, and Suresh K. Bhargava . Nanoscale Cobalt–Manganese Oxide Catalyst Supported on Shape-Controlled Cerium Oxide: Effect of Nanointerface Configuration on Structural, Redox, and Catalytic Properties. Langmuir 2017, 33 (8) , 1743-1750. https://doi.org/10.1021/acs.langmuir.6b03445
    11. Franklin (Feng) Tao and Peter A. Crozier . Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chemical Reviews 2016, 116 (6) , 3487-3539. https://doi.org/10.1021/cr5002657
    12. Yimin A. Wu, Liang Li, Zheng Li, Alper Kinaci, Maria K. Y. Chan, Yugang Sun, Jeffrey R. Guest, Ian McNulty, Tijana Rajh, and Yuzi Liu . Visualizing Redox Dynamics of a Single Ag/AgCl Heterogeneous Nanocatalyst at Atomic Resolution. ACS Nano 2016, 10 (3) , 3738-3746. https://doi.org/10.1021/acsnano.6b00355
    13. Dang Sheng Su, Bingsen Zhang, and Robert Schlögl . Electron Microscopy of Solid Catalysts—Transforming from a Challenge to a Toolbox. Chemical Reviews 2015, 115 (8) , 2818-2882. https://doi.org/10.1021/cr500084c
    14. Shiran Zhang, Luan Nguyen, Yuan Zhu, Sihui Zhan, Chia-Kuang (Frank) Tsung, and Franklin (Feng) Tao . In-Situ Studies of Nanocatalysis. Accounts of Chemical Research 2013, 46 (8) , 1731-1739. https://doi.org/10.1021/ar300245g
    15. Ping Lu and Younan Xia . Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity. Langmuir 2013, 29 (23) , 7070-7078. https://doi.org/10.1021/la400747y
    16. Luan Nguyen, Fang Cheng, Shiran Zhang, and Franklin (Feng) Tao . Visualization of Surfaces of Pt and Ni Model Catalysts in Reactive Environments Using Ambient Pressure High Temperature Scanning Tunneling Microscopy and Understanding the Restructurings of Surfaces of Model Metal Catalysts under Reaction Conditions at Near Ambient Pressure. The Journal of Physical Chemistry C 2013, 117 (2) , 971-977. https://doi.org/10.1021/jp3086842
    17. Min Tang, Petra E. de Jongh, Krijn P. de Jong. In Situ Transmission Electron Microscopy to Study the Location and Distribution Effect of Pt on the Reduction of Co 3 O 4 –SiO 2. Small 2024, 20 (1) https://doi.org/10.1002/smll.202304683
    18. Kate Reidy, Joachim Dahl Thomsen, Frances M. Ross. Perspectives on ultra-high vacuum transmission electron microscopy of dynamic crystal growth phenomena. Progress in Materials Science 2023, 139 , 101163. https://doi.org/10.1016/j.pmatsci.2023.101163
    19. . In‐Situ Gas–Solid Interactions. 2023, 215-253. https://doi.org/10.1002/9783527834822.ch7
    20. Jimin Kwag, Sungin Kim, Sungsu Kang, Jungwon Park. Multiple‐length scale investigation of Pt/C degradation by identical‐location transmission electron microscopy. Bulletin of the Korean Chemical Society 2023, 44 (6) , 488-494. https://doi.org/10.1002/bkcs.12690
    21. J. Lindner, U. Ross, V. Roddatis, Ch. Jooss. Langmuir analysis of electron beam induced plasma in environmental TEM. Ultramicroscopy 2023, 243 , 113629. https://doi.org/10.1016/j.ultramic.2022.113629
    22. Hongkui Zheng, Xiner Lu, Kai He. In situ transmission electron microscopy and artificial intelligence enabled data analytics for energy materials. Journal of Energy Chemistry 2022, 68 , 454-493. https://doi.org/10.1016/j.jechem.2021.12.001
    23. Aishah Mahpudz, Siu Ling Lim, Hitoshi Inokawa, Katsuki Kusakabe, Ryuichi Tomoshige. Cobalt nanoparticle supported on layered double hydroxide: Effect of nanoparticle size on catalytic hydrogen production by NaBH4 hydrolysis. Environmental Pollution 2021, 290 , 117990. https://doi.org/10.1016/j.envpol.2021.117990
    24. Lihi Rikanati, Shahar Dery, Elad Gross. AFM-IR and s-SNOM-IR measurements of chemically addressable monolayers on Au nanoparticles. The Journal of Chemical Physics 2021, 155 (20) https://doi.org/10.1063/5.0072079
    25. Chenwei Ma, Yifeng Yun, Tianfu Zhang, Haiyun Suo, Lai Yan, Xianfeng Shen, Yongwang Li, Yong Yang. Insight into the Structural Evolution of the Cobalt Oxides Nanoparticles upon Reduction Process: An In Situ Transmission Electron Microscopy Study. ChemCatChem 2021, 13 (20) , 4350-4354. https://doi.org/10.1002/cctc.202100983
    26. Hitoshi INOKAWA, Koji OKAMOTO, Aishah Binti MAHPUDZ, Yoshiro OHGI, Ryuichi TOMOSHIGE, Katsuki KUSAKABE. Formation of cobalt clusters in Layered Double Hydroxide. Journal of the Ceramic Society of Japan 2021, 129 (3) , 175-180. https://doi.org/10.2109/jcersj2.20131
    27. Wenjie Shen. Morphology-dependent nanocatalysis: tricobalt tetraoxide. Research on Chemical Intermediates 2021, 47 (1) , 195-209. https://doi.org/10.1007/s11164-020-04344-z
    28. Mingquan Xu, Aowen Li, Meng Gao, Wu Zhou. Single-atom electron microscopy for energy-related nanomaterials. Journal of Materials Chemistry A 2020, 8 (32) , 16142-16165. https://doi.org/10.1039/D0TA04918B
    29. Sooyeon Hwang, Xiaobo Chen, Guangwen Zhou, Dong Su. In Situ Transmission Electron Microscopy on Energy‐Related Catalysis. Advanced Energy Materials 2020, 10 (11) https://doi.org/10.1002/aenm.201902105
    30. Selvaraj Senthil Kumar, Vikram Jayaram, Prasanta Kumar Ojha, Shri Prakash Badi, Singanahalli ThippaReddy Aruna. Co–Cu–YSZ–GDC as an anode material for internal reforming SOFC?. Nanomaterials and Energy 2018, 7 (2) , 44-51. https://doi.org/10.1680/jnaen.18.00003
    31. Siyu Wu, Yugang Sun. In Situ Techniques for Probing Kinetics and Mechanism of Hollowing Nanostructures through Direct Chemical Transformations. Small Methods 2018, 2 (11) https://doi.org/10.1002/smtd.201800165
    32. Yan Zhou, Chuanchuan Jin, Yong Li, Wenjie Shen. Dynamic behavior of metal nanoparticles for catalysis. Nano Today 2018, 20 , 101-120. https://doi.org/10.1016/j.nantod.2018.04.005
    33. Yong Zhu, Mingquan Xu, Wu Zhou. High-resolution electron microscopy for heterogeneous catalysis research. Chinese Physics B 2018, 27 (5) , 056804. https://doi.org/10.1088/1674-1056/27/5/056804
    34. Yan Zhou, Yong Li, Wenjie Shen. Shape Engineering of Oxide Nanoparticles for Heterogeneous Catalysis. Chemistry – An Asian Journal 2016, 11 (10) , 1470-1488. https://doi.org/10.1002/asia.201600115
    35. Peter A. Crozier, Benjamin K. Miller. Spectroscopy of Solids, Gases, and Liquids in the ETEM. 2016, 95-141. https://doi.org/10.1007/978-3-319-22988-1_4
    36. Shen Zhao, Yuanyuan Li, Eli Stavitski, Ryan Tappero, Stephen Crowley, Marco J. Castaldi, Dmitri N. Zakharov, Ralph G. Nuzzo, Anatoly I. Frenkel, Eric A. Stach. Operando Characterization of Catalysts through use of a Portable Microreactor. ChemCatChem 2015, 7 (22) , 3683-3691. https://doi.org/10.1002/cctc.201500688
    37. Tao Xu, Litao Sun. Dynamic In‐Situ Experimentation on Nanomaterials at the Atomic Scale. Small 2015, 11 (27) , 3247-3262. https://doi.org/10.1002/smll.201403236
    38. Carolin Schultz, Kate Powell, Alison Crossley, Kerstin Jurkschat, Peter Kille, A. John Morgan, Daniel Read, William Tyne, Elma Lahive, Claus Svendsen, David J. Spurgeon. Analytical approaches to support current understanding of exposure, uptake and distributions of engineered nanoparticles by aquatic and terrestrial organisms. Ecotoxicology 2015, 24 (2) , 239-261. https://doi.org/10.1007/s10646-014-1387-3
    39. Silvia Bordiga, Carlo Lamberti, Francesca Bonino, Arnaud Travert, Frédéric Thibault-Starzyk. Probing zeolites by vibrational spectroscopies. Chemical Society Reviews 2015, 44 (20) , 7262-7341. https://doi.org/10.1039/C5CS00396B
    40. Peter A. Crozier, Thomas W. Hansen. In situ and operando transmission electron microscopy of catalytic materials. MRS Bulletin 2015, 40 (1) , 38-45. https://doi.org/10.1557/mrs.2014.304
    41. Haimei Zheng, Ying Shirley Meng, Yimei Zhu. Frontiers of in situ electron microscopy. MRS Bulletin 2015, 40 (1) , 12-18. https://doi.org/10.1557/mrs.2014.305
    42. Xufeng Zhou, Zhaoping Liu. Applications of Graphene in Lithium Ion Batteries. 2014, 65-136. https://doi.org/10.1201/b17757-4
    43. Kristin Høydalsvik, Jostein Bø Fløystad, Tiejun Zhao, Morteza Esmaeili, Ana Diaz, Jens W. Andreasen, Ragnvald H. Mathiesen, Magnus Rønning, Dag W. Breiby. In situ X-ray ptychography imaging of high-temperature CO2 acceptor particle agglomerates. Applied Physics Letters 2014, 104 (24) https://doi.org/10.1063/1.4884598
    44. Dong Su. TEM Characterization of Metallic Nanocatalysts. 2014, 577-618. https://doi.org/10.1007/978-3-642-38934-4_12
    45. Nasir Mahmood, Chenzhen Zhang, Han Yin, Yanglong Hou. Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells. J. Mater. Chem. A 2014, 2 (1) , 15-32. https://doi.org/10.1039/C3TA13033A
    46. Edward A. Lewis, Sarah J. Haigh, Thomas J. A. Slater, Zheyang He, Matthew A. Kulzick, M. Grace Burke, Nestor J. Zaluzec. Real-time imaging and local elemental analysis of nanostructures in liquids. Chem. Commun. 2014, 50 (70) , 10019-10022. https://doi.org/10.1039/C4CC02743D
    47. Xianlong Zhou, Yiren Zhong, Mei Yang, Meng Hu, Jinping Wei, Zhen Zhou. Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability. Chem. Commun. 2014, 50 (85) , 12888-12891. https://doi.org/10.1039/C4CC05989A
    48. Lu Bai, Fang Fang, Yanyan Zhao, Yanguo Liu, Jinpeng Li, Guoyong Huang, Hongyu Sun. A sandwich structure of mesoporous anatase TiO 2 sheets and reduced graphene oxide and its application as lithium-ion battery electrodes. RSC Adv. 2014, 4 (81) , 43039-43046. https://doi.org/10.1039/C4RA04979A
    49. Chenyang Zha, Dafang He, Jiwei Zou, Liming Shen, Xiaoyan Zhang, Yifeng Wang, Harold H. Kung, Ningzhong Bao. A minky-dot-fabric-shaped composite of porous TiO 2 microsphere/reduced graphene oxide for lithium ion batteries. J. Mater. Chem. A 2014, 2 (40) , 16931-16938. https://doi.org/10.1039/C4TA03675A
    50. Dezhi Kong, Weina Ren, Yongsong Luo, Yaping Yang, Chuanwei Cheng. Scalable synthesis of graphene-wrapped Li 4 Ti 5 O 12 dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life. J. Mater. Chem. A 2014, 2 (47) , 20221-20230. https://doi.org/10.1039/C4TA04711G
    51. Yong Yan, Dong Wang, Peter Schaaf. Fabrication of N-doped TiO2 coatings on nanoporous Si nanopillar arrays through biomimetic layer by layer mineralization. Dalton Transactions 2014, 43 (22) , 8480. https://doi.org/10.1039/c3dt53409j
    52. Chao Chen, Hong Jian, Xinxin Fu, Zhimin Ren, Mi Yan, Guodong Qian, Zhiyu Wang. Facile synthesis of graphene-supported mesoporous Mn3O4 nanosheets with a high-performance in Li-ion batteries. RSC Advances 2014, 4 (11) , 5367. https://doi.org/10.1039/c3ra45976d
    53. Donghua Teng, Yunhua Yu, Xiaoping Yang. Hierarchical flower-like TiO2/MPCNFs as a free-standing anode with superior cycling reversibility and rate capability. RSC Advances 2014, 4 (24) , 12309. https://doi.org/10.1039/c3ra47685e
    54. E. Longo, L. S. Cavalcante, D. P. Volanti, A. F. Gouveia, V. M. Longo, J. A. Varela, M. O. Orlandi, J. Andrés. Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01676
    55. Gulaim A. Seisenbaeva, Jean‐Marie Nedelec, Geoffrey Daniel, Carmen Tiseanu, Vasile Parvulescu, Vilas G. Pol, Luis Abrego, Vadim G. Kessler. Mesoporous Anatase TiO 2 Nanorods as Thermally Robust Anode Materials for Li‐Ion Batteries: Detailed Insight into the Formation Mechanism. Chemistry – A European Journal 2013, 19 (51) , 17439-17444. https://doi.org/10.1002/chem.201303283
    56. Zhe Zhang, Qingxin Chu, Huiyan Li, Jinhui Hao, Wenshu Yang, Baoping Lu, Xi Ke, Jing Li, Jilin Tang. One-pot solvothermal synthesis of graphene-supported TiO2 (B) nanosheets with enhanced lithium storage properties. Journal of Colloid and Interface Science 2013, 409 , 38-42. https://doi.org/10.1016/j.jcis.2013.07.053
    57. Ileana Florea, Yuefeng Liu, Ovidiu Ersen, Christian Meny, Cuong Pham‐Huu. Microstructural Analysis and Energy‐Filtered TEM Imaging to Investigate the Structure–Activity Relationship in Fischer–Tropsch Catalysts. ChemCatChem 2013, 5 (9) , 2610-2620. https://doi.org/10.1002/cctc.201300103
    58. Yin Ting Teng, Stevin S. Pramana, Junfeng Ding, Tom Wu, Rachid Yazami. Investigation of the conversion mechanism of nanosized CoF2. Electrochimica Acta 2013, 107 , 301-312. https://doi.org/10.1016/j.electacta.2013.05.107
    59. Liqiang Jing, Wei Zhou, Guohui Tian, Honggang Fu. Surface tuning for oxide-based nanomaterials as efficient photocatalysts. Chemical Society Reviews 2013, 42 (24) , 9509. https://doi.org/10.1039/c3cs60176e
    60. Di Wei, Jani Kivioja. Graphene for energy solutions and its industrialization. Nanoscale 2013, 5 (21) , 10108. https://doi.org/10.1039/c3nr03312k
    61. Mengmeng Zhen, Liwei Su, Zonghuan Yuan, Lu Liu, Zhen Zhou. Well-distributed TiO2 nanocrystals on reduced graphene oxides as high-performance anode materials for lithium ion batteries. RSC Advances 2013, 3 (33) , 13696. https://doi.org/10.1039/c3ra41341a
    62. Jianfei Lei, Kai Du, Ronghui Wei, Jing Ni, Liben Li, Weishan Li. Structural properties and electrochemical behavior of cone-like TiO2: emphasizing the contributions of structure and spatial arrangement to lithium storage. RSC Advances 2013, 3 (33) , 13843. https://doi.org/10.1039/c3ra41624k
    63. Peng Gao, Darren Delai Sun, Wun Jern Ng. Multifunctional nanostructured membrane for clean water reclamation from wastewater with various pH conditions. RSC Advances 2013, 3 (35) , 15202. https://doi.org/10.1039/c3ra42181c
    64. Gregory Lui, Jin-Yun Liao, Aoshu Duan, Zisheng Zhang, Michael Fowler, Aiping Yu. Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. Journal of Materials Chemistry A 2013, 1 (39) , 12255. https://doi.org/10.1039/c3ta12329d
    65. S. X. Yu, L. W. Yang, Y. Tian, P. Yang, F. Jiang, S. W. Hu, X. L. Wei, J. X. Zhong. Mesoporous anatase TiO2 submicrospheres embedded in self-assembled three-dimensional reduced graphene oxide networks for enhanced lithium storage. Journal of Materials Chemistry A 2013, 1 (41) , 12750. https://doi.org/10.1039/c3ta12428b
    66. Bote Zhao, Simin Jiang, Chao Su, Rui Cai, Ran Ran, Moses O. Tadé, Zongping Shao. A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. Journal of Materials Chemistry A 2013, 1 (39) , 12310. https://doi.org/10.1039/c3ta12770b
    67. Yong Yan, Bo Hao, Dong Wang, Ge Chen, Eric Markweg, Arne Albrecht, Peter Schaaf. Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. Journal of Materials Chemistry A 2013, 1 (46) , 14507. https://doi.org/10.1039/c3ta13491a
    68. Franklin (Feng) Tao, Shiran Zhang, Luan Nguyen, Xueqiang Zhang. Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. Chemical Society Reviews 2012, 41 (24) , 7980. https://doi.org/10.1039/c2cs35185d
    69. Judith C. Yang, Matthew W. Small, Ross V. Grieshaber, Ralph G. Nuzzo. Recent developments and applications of electron microscopy to heterogeneous catalysis. Chemical Society Reviews 2012, 41 (24) , 8179. https://doi.org/10.1039/c2cs35371g

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect