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Abstract

In the last decade several estimators have been proposed that enforce the
grouping property. A regularized estimate exhibits the grouping property
if it selects groups of highly correlated predictor rather than selecting one
representative. The pairwise fused lasso is related to fusion methods but
does not assume that predictors have to be ordered. By penalizing param-
eters and differences between pairs of coefficients it selects predictors and
enforces the grouping property. Two methods how to obtain estimates are
given. The first is based on LARS and works for the linear model, the sec-
ond is based on quadratic approximations and works in the more general
case of generalized linear models. The method is evaluated in simulation
studies and applied to real data sets.

Keywords: Regularization, Fused lasso, Fusion estimates, Lasso, Elastic net

1 Introduction

Regularized estimation of regression parameters has been investigated thoroughly
within the last decade. With the introduction of the lasso, proposed by Tib-
shirani (1996), methods for sparse modeling in the high-predictor case became
available. In the following many alternative regularized estimators that include
variable selection were proposed, among them the elastic net (Zou and Hastie,
2005), SCAD (Fan and Li, 2001), the Dantzig selector (Candes and Tao, 2007)
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and boosting approaches (for example Bühlmann and Yu, 2003; Bühlmann and
Hothorn, 2007). Meanwhile most procedures are also available for generalized
linear models (GLMs). Since we will also work within the GLM framework in
the following some notation is introduced.

Let the generalized linear model (GLM) with response function h(.) be given
by

µ = E(y|X) = h(1β0 +Xβ),

where y = (y1, ..., yn)T is the response vector andX is the design matrix. It is as-
sumed that the predictors are standardized,

∑n
i=1 xij = 0 and (n−1)−1

∑n
i=1 x

2
ij =

1, ∀j ∈ {1, ..., p}. In the linear predictor η = 1β0 +Xβ the intercept β0 is sep-
arated because usually it is not penalized. With β0 = (β0, β

T ) we denote the
parameter vector including the intercept β0. Given the ith observation X i the yi
are (conditionally) independent observations from a simple exponential family

f(yi|θi, φ) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (1)

where θi is the natural parameter of the family, φ is a scale or dispersion parameter
and b(.), c(.) are specific functions corresponding to the type of the family.

Penalized likelihood estimates of coefficients have the general form

β̂0 = argmin
β0

{l(β0) + Pλ(β)},

where Pλ(β) is the penalty term that regularizes the estimates and l(β0) is the
negative log-likelihood function which corresponds to (1). Ridge regression (Hoerl
and Kennard, 1970), which uses PR

λ (β) = λ
∑p

j=1 β
2
j , frequently has smaller

prediction error than ordinary maximum likelihood (ML) estimates but does not
select predictors. The lasso penalty PL

λ (β) = λ
∑p

j=1 |βj| proposed by Tibshirani
(1996), has the advantage that coefficients whose corresponding predictors have
vanishing or low influence on the response are shrunk to zero. As discussed by Zou
and Hastie (2005) the lasso does not group predictors and estimates maximal n
predictors unequal to 0. In terms of Zou and Hastie (2005) an estimator exhibits
the grouping property if it tends to estimate the absolute value of coefficients
(nearly) equal if the corresponding predictors are highly correlated. In the case
of highly correlated influential covariates the lasso procedure tends to select only
few of these. As an alternative Zou and Hastie (2005) presented the elastic net
(EN). Its penalty term is the sum of lasso and ridge penalty, PL

λ1
(β)+PR

λ2
(β). It is

a strongly convex penalty which can also perform variable selection. Nowadays R
packages for solving the lasso- or the EN-penalized likelihood problems for GLMs
are available. For example Goemann (2010) and Friedman et al. (2010) proposed
algorithms to solve elastic net penalized regression problems. Both algorithms
are available as R-packages penalized and glmnet. Lokhorst et al. (2007) and
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Park and Hastie (2007) provided the R-packages the lasso2 and glmpath for
solving lasso penalized regression problem.

More recently, several alternative methods that also show grouping have been
proposed. Bondell and Reich (2008) proposed OSCAR for Octagonal Shrinkage
and Clustering Algorithm for Regression. An attractive feature of OSCAR is
that it can group very strictly. For specific choice of the tuning parameters the
estimates of coefficients are equal. Therefore one obtains clustered predictors
where one cluster shares the same coefficient. Typically one big cluster has es-
timates zero representing the predictors that have not been selected. Tutz and
Ulbricht (2009) considered correlation based regularization terms that explicitly
take the correlation of predictors into account. In order to obtain variable se-
lection the correlation-based penalty has to be used within a boosting algorithm
or an additional lasso term has to be used. For the combination of lasso and
correlation-based terms see Anbari and Mkhadri (2008).

In the present paper an alternative method that enforces the grouping effect is
proposed. It uses penalty terms that are similar to the fused lasso (FL) proposed
by Tibshirani et al. (2005) and shows good performance in terms of variable
selection and prediction.

2 Pairwise Fused Lasso (PFL)

The original fused lasso (Tibshirani et al., 2005) was developed for ordered pre-
dictors or signals as predictors and metrical response. For such predictors it is
possible to use the distances between predictors to obtain sparsity. Thus the
fused lasso penalty

P FL
λ1,λ2

(β) = λ1

p∑

j=1

|βj|+ λ2

∑

j=2

|βj − βj−1|, (2)

penalizes the difference between the coefficients of adjacent predictors βj and
βj−1. With proper selection of tuning parameters adjacent predictors are fused
or grouped. The first summand (the lasso term) of the fused lasso penalty enforces
variable selection, the second enforces fusion.

The pairwise fused lasso (PFL), which is proposed here, extends the fused
lasso (Tibshirani et al., 2005) to situations where the predictors have no natural
ordering. Fusion refers to all possible pairs of predictors and not only to adjacent
ones. Thus, the pairwise fused lasso penalty is defined by

P PFL
λ, α (β) = λ

[
α

p∑

j=1

|βj|+ (1− α)

p∑

j=2

j−1∑

k=1

|βj − βk|
]
, (3)

where λ > 0 and α with α ∈ [0, 1] are the tuning parameters. The first term
of the pairwise fused lasso penalty is the lasso penalty and accounts for variable
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selection, the second term represents the sum of the absolute values of all pairwise
differences of regression coefficients. This part of the penalty induces clustering.

By using all pairwise differences the pairwise fused lasso assumes no ordering
of the predictors. For categorical predictors a similar penalty has been used
for factor selection in ANOVA by Bondell and Reich (2009), and for categorical
variable selection by Gertheiss and Tutz (2010).

Soil Data - An Illustrating Example

In the soil data, which were used by Bondell and Reich (2008), the response is
rich-cove forest diversity (measured by the number of different plants species) in
the Appalachian Mountains of North Carolina and the explaining covariates are
15 characteristics. Twenty areas of the same size were surveyed. The number
of observations was 20 which is close to the number of predictors which was 15.
The data can be partitioned into two blocks. On the one hand there is a group of
7 highly correlated predictors. This group contains cationic covariates, 4 cations
(calcium, magnesium, potassium, and sodium) and 3 measurements that are very
close to them. The other group of covariates contains 4 other chemical elements
and 4 other soil characteristics, for example pH-value. The correlations within
this group is not very high. It is remarkable that the design matrix has not full
rank.

For illustration we use four different methods, lasso and three PFL methods.
The first segments of the coefficient paths given in Figure 1 demonstrate the
selecting and grouping property. It is seen that there is a strong similarity between
the lasso and the PFL method for α = 0.98. For large values of the tuning
parameter λ the lasso selects only few covariates. This effect is also seen in the
group of the highly correlated cationic covariates. It can bring instability in the
estimates as discussed by Zou and Hastie (2005) or Breiman (1996). For smaller
value of α the selection part becomes weaker and the fusion part stronger. It
is seen that for α = 0.9 and more distinctly for α = 0.1 the highly correlated
variables are fused, but there is hardly any effect beside selection for the weaker
correlated variables in the second column of Figure 1.

Extended Versions of Fused Lasso

The pairwise fused lasso penalty (3) can be modified by adding different weights to
achieve an improvement of the prediction accuracy or of the mean squared error
of the estimated parameter vector. Accordingly, a modification of the penalty
term is

P PFL
λ, α,w (β) = λ

[
α

p∑

j=1

wj|βj|+ (1− α)

p∑

j=2

j−1∑

k=1

wjk|βj − βk|
]
, (4)
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Figure 1: First segments of the solution paths for standardized coefficients on

the whole soil data set for decreasing tuning parameter λ. Left column: paths of

the cationic covariates. Right column: paths of the non cationic covariates. First

row: coefficient path of the lasso. Second row: coefficient path of PFL model

with small clustering part (α = 0.98). Third row: coefficient path of PFL model

with α = 0.9. Fourth row: coefficient path of PFL model with dominating fusion

part (α = 0.02).
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where wj and wjk are additional weights. One possibility is to choose wj =
|βML
j |−1 and wjk = |βML

j − βML
k |−1, where βML

i denotes the ith component of
maximum likelihood estimate. This choice is motivated by the adaptive lasso
(Zou, 2006) and its oracle properties. These data-dependent weights can yield
better prediction error if the maximum likelihood is well conditioned. In contrast
to the simple pairwise fused lasso where all parameters have the same amount of
shrinkage strength the penalty varies across coefficients. Large values of |βML

i |
yield small weights wi and consequently weaker shrinkage of the corresponding
parameters. If the maximum likelihood estimates of the jth and the kth predictor
have nearly the same value, the weight wjk causes large influence of the difference
penalty term.

Another possibility is to include the correlation among predictors into the
penalty. Zou and Hastie (2005) showed a relationship between correlation and
grouping such that strongly correlated covariates tend to be in or out of the model
together, but the correlation structure was not used explicitly in the penalty
term. A regularization method, which is based on the idea that highly correlated
covariates should have (nearly) the same influence on the response except to their
sign, is the correlation based penalty considered by Tutz and Ulbricht (2009).
Coefficients of two predictors are weighted according to their marginal correlation.
As a result, the intensity of penalization depends on the correlation structure. In
the same spirit the penalty term of the pairwise fused lasso can be extended to

P PFL
λ, α, ρ̂ (β) = λ

[
α

p∑

j=1

|βj|+ (1− α)

p∑

j=2

j−1∑

k=1

1

1− |ρ̂jk|
|βj − sign(ρ̂jk)βk|

]
, (5)

where ρ̂jk denotes the estimated marginal correlation between the jth and the kth
predictor. The factor sign(ρ̂jk) is caused by the fact that two negatively correlated
predictors have the same magnitude of influence but different signs. That is, for
ρ̂jk → 1, the coefficients β̂j and β̂k are nearly the same and for ρjk → −1, β̂j will

be close to −β̂k, respectively. In the case of uncorrelated predictors (ρ̂jk = 0) we
obtain the usual, unweighted pairwise fused lasso penalty.

Since the marginal correlation measures the interaction between the predictors
xj and xk without taking further covariates into account, we also investigate the
correlation based penalty in Equation (5) with partial correlations instead of the
marginal ones. The partial correlation determines to what extent the correlation
between two variables depends on the linear effect of the other covariates (Whit-
taker, 1990). Thereby, the aim is to eliminate this linear effect. We compute
the partial correlation matrix with the R package corpcor (Schäfer et al., 2009).
In this package a method for the regularization of (partial) correlation matrix
is implemented which makes sense in ill conditioned problems. In general the
correlation based weights can be substituted by dependency measurement which
are normed on [−1, 1]. A combination of correlation and ML weights is possible.
But this quite complicate penalty term did not show better performance.
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2.1 Solving the Penalized ML Problem

In this section we discuss two procedures for solving the PFL problem

β̂
PFL

0 = argmin
β

{l(β0) + P PFL
λ, α (β)},

where P PFL
λ, α (β) can be modified to include weights or correlation terms. The

first approach works only for normally distributed response. It is based on the
LARS algorithm from Efron et al. (2004). The second procedure is a generic
algorithm based on local quadratical approximation (LQA). The basic principles
of this algorithm were given by Osborne et al. (2000) and Fan and Li (2001).
The general LQA algorithm can solve a very wide class of penalized likelihood
problems (see Ulbricht, 2010b) and is available in an R-package (Ulbricht, 2010a).
We will give a short introduction to the algorithm in the second part of this
section.

2.1.1 Metric Regression and the LARS approach

We assume that y is centered and the response is normally distributed. Then
one has to solve the penalized least square problem

β̂
PFL

= argmin
β

‖y −Xβ‖2 + P PFL
λ, α (β). (6)

It is helpful to reparameterize the problem as follows. Let new parameters be
defined by

θjk = βj − βk, 1 ≤ k < j ≤ p,
θj0 = βj, 1 ≤ j ≤ p,

(7)

with the restriction
θjk = θj0 − θk0, 1 ≤ k < j ≤ p. (8)

With 0p×(p
2)

denoting a p×
(
p
2

)
-matrix zero matrix an expanded design matrix is

(X|0p×(p
2)

). The corresponding parameter vector is

θ = (θ10, ..., θp0, θ21, ..., θp(p−1))
T . (9)

With the PFL penalty having the form

P PFL
λ, α (θ) = λ

[
α

p∑

j=1

wj0|θj0|+ (1− α)

p−1∑

j=1

p∑

k=j+1

wjk|θjk|
]

the restiction (8) is incorporated by using an additional quadratic penalty term∑p−1
j=1

∑p
k=j+1(θj0 − θk0 − θjk)

2 weighted by a large tuning parameter γ. This
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yields

θ̂
PFL

= argmin
θ

‖y − (X|0p×(p
2)

)‖2

+γ

p−1∑

j=1

p∑

k=j+1

(θj0 − θk0 − θjk)2

+λ

[
α

p∑

j=1

wj0|θj0|+ (1− α)

p−1∑

j=1

p∑

k=j+1

wjk|θjk|
]
.

(10)

For γ → ∞ the restriction (8) is fulfilled. The reparameterization (7) allows
to formulate the approximate estimator (10) as a lasso type problem. Similar
reparameterizations were used by Zou and Hastie (2005) to represent the elastic
net problem as a lasso type problem. In the present problem one uses

θ̂
PFL

= argmin
θ

‖y0 − D̃θ‖2

+λ
[
α
∑p

j=1wj0|θj0|+ (1− α)
∑p−1

j=1

∑p
k=j+1 wjk|θjk|

]
,

(11)

where y0 = (yT , 0T
(p
2)

)T and 0 denotes a zero vector of length
(
p
2

)
. D̃ is the design

matrix

D̃ =

(
X|0p×(p

2)√
γC

)
,

where the matrix C is the p×
((
p
2

)
+ p
)
-matrix which accounts for the restriction

(8) which is equivalent to

θj0 − θk0 − θjk = 0, 1 ≤ k < j ≤ p. (12)

So the restriction (8) is fulfilled if Cθ = 0(p
2)

and C has the following form. Let

δjk, 1 ≤ k < j ≤ p, denote a p-dimensional row vector with −1 at the kth and
+1 at the jth component and zero otherwise. Let τm denote a

(
p
2

)
-dimensional

row vector whose mth component is −1 and zero otherwise. Then all constrains
given by (8) resp. (12) can be summarized in matrix notation

C =




δ21 τ 1

δ31 τ 2
...

...
δp1 τ p−1

δ32 τ p
δ42 τ p+1
...

...
δp(p−1) τ(p

2)




. (13)
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Let Θ = {(i, j)|0 ≤ j < i < p} denote the index set of the components of θ given
by (9) one obtains

θ̂
PFL

= argmin
θ

‖y0 − D̃θ‖2 + λ(

p∑

j=1

|αθj0|+
p−1∑

j=1

p∑

k=j+1

|(1− α)θjk|)

= argmin
θ

‖y0 − D̃θ‖2 + λ(
∑

t∈Θ

|α · θt|+ |(1− α) · θt|). (14)

Equation (14) is a lasso problem on the expanded design matrix D̃ weighted by α

and (1−α). The weights can be included by multiplying D̃ with the reciprocals
of weights

D = D̃ diag(αw10, ..., αwp0, (1− α)w21, ..., (1− α)wp(p−1))
−1. (15)

to obtain
θ̂
PFL

= argmin
θ

‖y0 −Dθ‖2 + λ(
∑

t∈Θ

|θt|).

So finally to get β̂
PFL

we have to multiply the first p components of θ̂
PFL

with
α−1 diag(αw10, ..., αwp0). For the correlation based pairwise fused lasso we have

to modify the submatrix C of D̃. If sign(ρ̂jk) = −1 then δjk, 1 ≤ k < j ≤ p,
is a p-dimensional row vector where the kth and the jth component are +1 and
all remaining are zero (see equation (5)). It is remarkable that for wjk = 1,
0 ≤ 1 < k ≤ p, in (15) we get the unweighted PFL3.

2.1.2 Generalized Linear Models and the LQA Approach

A general class of penalized generalized linear models can be fitted by using
the local quadratic approximation (LQA) approach (Ulbricht, 2010b). The LQA
algorithm solves penalized minimization problems

β̂0 = argmin
β0

{
l(β0) + P δ

λ(β)
}
, (16)

where l(β0) is the negative log-likelihood of the underlying generalized linear
model and the penalty term is a sum of J penalty functions having the form

P δ
λ(β) =

J∑

j=1

pλj ,j(|aTj β|), (17)

where the aj are known vector of constants.Let the superscript δ denote the
specific penalty family, e.g. P PFL

λ,α (β) denotes the pairwise fused lasso penalty.

The penalty proposed by Fan and Li (2001) has the special structure P δ
λ(β) =∑p

j=1 pλ(|βj|). Since for that structure the vectors aj have only one non-zero
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element it cannot be used to include interactions between the predictors. Hence,
the approach of Fan and Li (2001) can be applied only to penalty families such
as ridge and lasso, but not to the fused lasso or pairwise fused lasso.

In 17 the sum of all J penalty functions pλj ,j(|aTj β|) determines the penalty
region, the number J of penalty functions in in general not equal to the number
of regressors p. Furthermore, the type of the penalty function and the tuning
parameter λj do not have to be the same for all J penalty functions. It is easily
seen that the pairwise fused lasso penalty can be described by

P PFL
λ,α (β) =

p+(p
2)∑

j=1

pλ,α,j(|aTj β|).

The first p penalty functions are

pλ,α,j(·) = λ · α|aTj β|, j = 1, . . . , p,

where aj = (0, . . . , 0, 1, 0, . . . , 0)T with a one at the jth position. The next
(
p
2

)

penalty functions for the difference penalty term are

pλ,α,j(·) = λ (1− α) |aTj β|, j = p+ 1, . . . , p̃+ p

with the p-dimensional vectors having the form aj = (0, . . . ,−1, 0, . . . , 1, 0, . . . , 0)
which describes the differences between two parameters..

An often applied principle in solving a convex optimization problem is to use
a quadratic approximation of the objective function. If the latter is twice contin-
uously differentiable iterative procedures of the Newton type apply. Therefore,
we need the gradient and the Hessian of the objective function. Since the first
term of (16) is the negative log-likelihood, we can use the corresponding score
function and expected Fisher information matrix. For the second term, one can-
not proceed the same way because it includes L1-norm terms. Therefore, Ulbricht
(2010b) developed a quadratic approximation of the penalty term (17) which is
shortly sketched in the following. Based on this approximation, Newton-type
algorithms can be applied.

Let the following properties hold for all J penalty functions:

1. pλ,j : IR≥0 → IR≥0 with pλ,j(0) = 0,

2. pλ,j is continuous and monotone in |aTj β|,

3. pλ,j is continuously differentiable for all aTj β 6= 0, i.e.

dpλ,j
(
|aTj β|

)
/d|aTj β| ≥ 0 for all aTj β ≥ 0.

Let β(k) denote the approximation of the estimate β̂ at the kth iteration of the
LQA algorithm. Then the first order Taylor expansion of the jth penalty function
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in the neighborhood of β(k) can be written as

pλ,j
(
|aTj β|

)
≈ pλ,j

(
|aTj β(k)|

)
+

1

2

p′λ,j
(
|aTj β(k)|

)
√(
aTj β(k)

)2
+ c

(
βTaja

T
j β − βT(k)aja

T
j β(k)

)

(18)
which is a quadratic function of β. Thereby, p′λ,j

(
|aTj β(k)|

)
=

dpλ,j
(
|aTj β|

)
/d|aTj β| ≥ 0 denotes the first derivative and c is a small positive

integer (for our computations we choose c = 10−8). Using matrix notation and
summation over all J penalty functions the Taylor expansion is equivalent to

J∑

j=1

pλ,j
(
|aTj β|

)
≈

J∑

j=1

pλ,j
(
|aTj β(k)|

)
+

1

2

(
βTaλβ − βT(k)aλβ(k)

)
, (19)

with

aλ =
J∑

j=1

p′λ,j
(
|aTj β(k)|

)
√(
aTj β(k)

)2
+ c
aja

T
j (20)

which does not depend on the parameter vector β. Since an intercept is included
in the model, the penalty matrix is extended to

a∗λ =

[
0 0T

0 aλ

]
, (21)

where 0 is the p-dimensional zero vector. Then, starting with the initial value
b(0), the update step of this Newton-type algorithm based on local quadratic
approximations of the penalty term is

b(k+1) = b(k) −
(
F (b(k)) + a∗λ

)−1 {−(b(k)) + a∗λb(k)

}
. (22)

Corresponding to the log-likelihood l(b), (b) and F (b) denote the score function
and Fisher information matrix, respectively. Iterations are carried out until the
relative distance moved during the kth step is less or equal to a specified threshold
ε, i.e. the termination condition is

‖b(k+1) − b(k)‖
‖b(k)‖

≤ ε, ε > 0. (23)

3 Simulation Study

In this section we investigate the performance of the pairwise fused lasso and
compare it to established procedures. All simulations are based on the generalized
linear model

E(y|X) = h(Xβtrue)

11



where h(.) is the canonical response function. 50 replications are performed
for every simulation scenario and in each replication we generate a training, a
validation and a test data set. The observation numbers of the corresponding data
sets are denoted by ntrain/nvali/ntest. The training set is used to fit the models
defined by the different tuning parameter(s). The optimal tuning parameter(s)
are determined by the minimizing the deviance on the validation data set. Finally
we use the test data set to evaluate the prediction by the predictive deviance on
the test dataset, DEV = −2(l(ŷtest)−l(ytest)). Further we use MSE = ‖β−β̂‖2

to measure the accuracy of the estimate of β. The result are illustrated by boxplot
where the outliers are not shown. As abbreviation for the differently weighted
PFLs we will use the following:

• PFL denotes PFL penalty with all weights set to 1.

• PFL.ml denotes PFL penalty with ML-weights.

• PFL.cor denotes PFL penalty with correlation driven weights.

• PFL.pcor denotes PFL penalty with partial correlation driven weights.

We give the lasso, EN, and the ML estimates for comparison. The lasso and the
EN estimates are calculated by the lqa routine. Since we investigate a regular-
ization method with both variable selection and grouping property, we use the
following simulation scenarios.

Normal Regression

Setting 1: The first setting is specified by the parameter vector βtrue =
(3, 1.5, 0, 0, 0, 2, 0, 0)T and standard error σ = 3. The correlation between
the i-th and the j-th predictor is

corr(i, j) = 0.9|i−j|, ∀i, j ∈ {1, . . . , 8} . (24)

The observation numbers are 20/20/200.

Setting 2: In this setting we have p = 20 predictors. The parameter vector is
structured into blocks:

βtrue =
(

0, . . . , 0︸ ︷︷ ︸
5

, 2, . . . , 2︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 2, . . . , 2︸ ︷︷ ︸
5

)T
.

The standard error σ is 15 and the correlation between two predictors X i

andXj is given by corr(i, j) = 0.5. The observation numbers are 50/50/400.

12



Setting 3: This setting consists of p = 20 predictors. The parameter vector is
given by

βtrue =
(
5, 5, 5, 2, 2, 2, 10, 10, 10, 0, . . . , 0︸ ︷︷ ︸

11

)T
.

and σ = 15. The design matrix X is specified by the following procedure.
First we generate three auxiliary predictors Zj ∼ Nn(0, I), j ∈ {1, 2, 3}.
With these predictors we generate

X i = Z1 + ε̃i, i ∈ {1, 2, 3},
X i = Z2 + ε̃i, i ∈ {4, 5, 6},
X i = Z3 + ε̃i, i ∈ {7, 8, 9},

with ε̃i ∼ Nn(0, 0.01I), i ∈ {1, . . . , 9}. The predictors X i, i ∈ {10, . . . , 20},
are white noise, i.e. X i ∼ Nn(0, I). Thus, within the first three blocks of
3 variables there is a quite high correlation, but there is no correlation
between these blocks. The observation numbers are 50/50/400.

Binary Regression

In each simulation scenario the observation numbers ntrain/nvali/ntest correspond
to 100/100/400. Furthermore, the predictor η = Xβtrue from the Normal case is
multiplied by a factor a in order to realize a appropriate domain for the logistic
response function. The value range of the predictor should be approximately the
interval [−4, 4]. Thus, for each setting we determine a factor a and multiply the
true parameter vector from the normal case by this factor. The corresponding
factor a and the modified parameter vector for each simulation setting are given
by:

Setting 1:
a = 0.40 → βtrue = (1.2, 0.6, 0, 0, 0, 0.8, 0, 0)T

Setting 2:

a = 0.15 → βtrue =
(

0, . . . , 0︸ ︷︷ ︸
5

, 0.3, . . . , 0.3︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0.3, . . . , 0.3︸ ︷︷ ︸
5

)T

Setting 3:

a = 0.10 → βtrue =
(
0.75, 0.75, 0.75, 0.3, 0.3, 0.3, 1.5, 1.5, 1.5, 0, . . . , 0︸ ︷︷ ︸

11

)T

The response is finally modeled by yi = Bin(1, (1 + exp(−ηi))−1). In Figure 3
the result is illustrated by boxplots

13
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Figure 2: Boxplots of the MSE and Deviance for simulations with normal

distributed response.
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Figure 3: Boxplots of the MSE and Deviance for simulations with binomial

distributed response
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Poisson Regression

Analogously to the simulation study on binary responses, the predictor η =
Xβtrue is multiplied by a factor a. Since the value range of the mean µ = exp(η)
should be approximately in the interval [0, 8], we again determine for each setting
the corresponding factor a. We model the response by yi = Pois(exp(ηi)). The
modified parameter vectors and the factor a determine the settings:

Setting 1:
a = 0.15 → βtrue = (0.45, 0.225, 0, 0, 0, 0.3, 0, 0)T

Setting 2:

a = 0.05 → βtrue =
(

0, . . . , 0︸ ︷︷ ︸
5

, 0.1, . . . , 0.1︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 0.3, . . . , 0.3︸ ︷︷ ︸
5

)T

Setting 3:

a = 0.03 → βtrue =
(
0.15, 0.15, 0.15, 0.06, 0.06, 0.06, 0.3, 0.3, 0.3, 0, . . . , 0︸ ︷︷ ︸

11

)T

We model the response by yi = Pois(1, exp(ηi)). Figure 4 sums up the result by
boxplots

Summing Up the Result

The results of the simulation studies are summarized in Table 1. It is seen that
the PFL is competitive in terms of the predictive deviance and the MSE. The
simulation study gives no clear indication which weights are best. The perfor-
mance of both correlation based weights is quite similar. The correlation based
weights seem to perform quite well across all settings. In general, apart from
the ML based estimate, the PFL penalties distinctly outperform the lasso and
are strong competitors for the elastic net. The pairwise penalization seems to be
an appropriate way for improving the performance of estimates. The exception
are methods based on ML weights which suffer from the instability of the ML
estimate. In ill-conditioned cases one should replace the MLE by a regularized
estimate which does not select variables like the ridge estimator. It should be
noted that in contrast to the elastic net the PFL penalty enforces identical coef-
ficients for “similar” variables where the meaning of “similar” is specified by the
chosen weights.

4 Data Example

In this section we give two real data examples. One for the Binomial case and
one for the Gaussian. In both cases we split the data set 50 times in two parts.
One training data set with ntrain observations and a test data set with ntest
observations. We use the training data set to learn the model by a 5-fold cross

16



●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

PFL .ml .cor .pcor EN LAS ML

0.
0

0.
5

1.
0

1.
5

Simulation 1

M
S

E

●

●

●

●

● ●

●

●

●

●

PFL .ml .cor .pcor EN LAS ML

20
0

30
0

40
0

Simulation 1

D
ev

ia
nc

e

●

●

●

●●

●

●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●
●●

●
●

●

●
●
●

●

●●
●●
●

●

●

●
●

●

●

●

●

●

●

PFL .ml .cor .pcor EN LAS ML

0.
0

0.
2

0.
4

Simulation 2

M
S

E

● ●

●

●

●

●

● ●

PFL .ml .cor .pcor EN LAS ML

40
0

50
0

60
0

Simulation 2

D
ev

ia
nc

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PFL .ml .cor .pcor EN LAS ML

0.
0

0.
5

1.
0

1.
5

Simulation 3

M
S

E

● ● ● ● ●

●

●

PFL .ml .cor .pcor EN LAS ML

40
0

60
0

80
0

Simulation 3

D
ev

ia
nc

e

Figure 4: Boxplots of the MSE and Deviance for simulations with Poisson

distributed response
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PFL PFL.ml PFL.cor PFL.pcor EN LASSO ML

Normal distribution

Setting 1
MSE

7.90 10.54 7.64 8.64 8.95 11.64 55.22
(0.88) (0.68) (0.94) (0.61) (0.57) (1.83) (8.13)

DEV
52.17 54.33 51.25 52.85 52.32 56.13 76.79

(2.05) (3.345) (1.90) (2.31) (2.68) (2.86) (4.62)

Setting 2
MSE

20.39 20.82 20.35 21.53 22.37 54.01 284.16
(0.25) (0.52) (0.20) (1.50) (1.57) (3.77) (22.11)

DEV
218.82 219.21 218.82 223.90 223.04 232.50 336.00

(3.01) (2.66) (2.82) (2.52) (2.05) (3.05) (12.71)

Setting 3
MSE

189.15 543.81 48.07 54.40 90.79 330.20 4057.24
(44.89) (51.63) (76.95) (70.67) (58.76) (26.06) (315.11)

DEV
76.12 74.90 76.66 76.39 76.22 76.60 103.97

(1.37) (1.00) (1.24) (1.00) (1.34) (1.30) (2.77)

Binomial distribution

Setting 1
MSE

0.97 1.27 1.01 1.0404 1.06 1.42 6.00
(0.12) (0.13) (0.11) (0.11) (0.14) (0.15) (1.23)

DEV
354.66 354.11 353.04 353.66 353.24 354.49 384.20
(4.50) (3.31) (4.53) (4.54) (4.55) (5.38) (4.34)

Setting 2
MSE

0.47 0.47 0.48 0.52 0.53 0.84 8.46
(0.015) (0.01) (0.01) (0.02) (0.03) (0.05) (1.39)

DEV
368.18 368.46 368.26 368.91 372.20 380.85 528.39

(2.22) (3.05) (0.99) (2.60) (3.51) (2.97) (40.19)

Setting 3
MSE

2.13 4.17 1.48 1.75 1.73 3.30 399.04
(0.33) (0.26) (0.43) (0.35) (0.24) (0.44) (100.04)

DEV
300.64 287.81 299.71 299.21 299.34 300.14 544.94
(2.36) (4.36) (3.63) (2.99) (3.71) (3.66) (51.69)

Poisson distribution

Setting 1
MSE

0.23 0.25 0.23 0.23 0.22 0.32 5.70
(0.01) (0.02) (0.01) (0.01) (0.02) (0.05) (1.06)

DEV
246.19 250.30 242.14 246.06 244.20 249.11 408.90
(6.44) (6.50) (5.40) (6.66) (6.88) (6.05) (55.29)

Setting 2
MSE

0.05 0.05 0.05 0.06 0.07 0.15 1.54
(0.00) (0.00) (0.00) (0.00) (0.01) (0.02) (0.14)

DEV
461.56 464.22 461.23 457.51 462.09 491.67 929.31
(4.53) (4.15) (3.08) (7.00) (6.04) (5.59) (61.26)

Setting 3
MSE

0.19 0.59 0.26 0.26 0.21 0.42 20.19
(0.03) (0.04) (0.03) (0.03) (0.04) (0.05) (2.58)

DEV
507.66 463.25 511.19 506.18 506.36 513.92 1061.44
(12.33) (8.10) (18.07) (15.28) (18.65) (19.69) (63.48)

Table 1: Results of the simulation studies.
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validation. The model is determined by a parameter vector β̂train. The test data
set is used for measuring the predictive deviance −2(l(ytest, ŷtest)− l(ytest, ytest),
where l(., .) denotes the log likelihood function and ŷtest = h((1, X test)βtrain) is
the modeled expectation for the test data set.

Biopsy Data Set

The biopsy dataset is from the R-package MASS Venables and Ripley (2002). It
contains 699 observations and 9 covariates. We exclude the 16 observations with
missing values. The covariates are whole-number scores between 0 and 10. Their
description is given in Table 2. The response contains two classes of breast cancer

Number Explanation

1 clump thickness
2 uniformity of cell size
3 uniformity of cell shape
4 marginal adhesion
5 single epithelial cell size
6 bare nuclei
7 bland chromatin
8 normal nucleoli
9 mitoses

Table 2: Covariates of the biopsy data

”benign” or ”malignant” and so we fit a logistic regression model. The predictive
deviance is given in Figure 5 and in Table 3 In Figure 6 the estimates are shown.
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Figure 5: Boxplots of the predictive deviance for the Biopsy Data Set

In contrast to the Elastic Net estimates the grouping property of the PFL is
stronger. Further it is remarkable that different models have similar predictive
deviances. The MLE leads some to perfect discrimination of the groups and the
procedures gives warning.
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PFL PFL.ml PFL.cor PFL.pcor EN LASSO ML

49.2292 49.6492 49.4307 48.18492 48.6917 49.4356 51.5290
(10.8875) (10.9686) (11.3377) (10.7444) (8.8604) (11.0634) (27.7673)

Table 3: The median of predictive deviance on test data for the Bones Data

Set. The bootstrap variance based on 500 bootstrap samples is bracketed.
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Figure 6: Boxplots of the coefficient estimates for the Biopsy Data Set
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Bones Data Set

This study aims at estimating the age by various measurements of bones for
87 persons. The underlying data set consists 20 predictors. They are bones
characteristics and the gender of the deceased person. The data based on the
Basel-Kollektiv and are provided by Stefanie Doppler from the department of
anthropology and human genetics of the LMU Munich. The predictors are given
in Table 4. Some of the predictors are highly correlated, i.e. ρij ≈ 0.9. We choose

Number Explanation

1 gender
2 size of an compact bone
3 femur class
4 type I osteon
5 type II osteon
6 osteon fragments
7 osteon population density
8 Haverssche canals
9 non Haverssche canals
10 Volkmannsche canals
11 resorption lacuna
12 percentage of resorption lacuna
13 percentage of general lamellae
14 percentage of osteonal bones
15 percentage of fragmental bones
16 surface of an osteon
17 surface of a resorption lacuna
18 quotient of the surface of a resorption lacuna

and the surface of an osteon
19 activation frequency
20 bone formation rate

Table 4: Covariates of the bones data

the normal model. We randomly split the data set 25-times into a test data set
with 60 observations and a test data set with n = 27. The predictive deviance on
test data and for each method are given in Table 5 and illustrated in Figure 7.
We give standardized estimates by boxplots of the coefficient estimates. Here the
selecting and grouping effect appears. All regularized estimators select variables.
The MLE-weighted PFL tends to group the covariates 12,13, and 14. It has
the best predictive deviance. It is remarkable that variable selection dominates
clustering in the other cases. Although the MLE is quite ill-conditioned using
ML weights improves the prediction.
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Figure 7: Boxplots of the predictive deviance for the Bones Data Set
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Figure 8: Boxplots of the predictors for the Bones Data Set
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PFL PFL.ml PFL.cor PFL.pcor EN LASSO ML

3.1969 3.1085 3.2367 3.1873 3.1432 3.1873 4.4276
(0.9178) (0.7589) (0.9112) (0.8401) (0.8366) (0.9212) (0.8909)

Table 5: The median of predictive deviance on test data for the Bones Data

Set. The bootstrap variance (B=500) is bracketed.

5 Concluding Remarks

We proposed a regularization method that enforces the grouping property by
including pairwise differences of coefficients in the penalty term. It works for
linear as well as generalized linear models and is strong competitor for the lasso
and the elastic net. Although it uses fusion methodology it does not assume that
a metric on predictors is available. Therefore it can used for common regression
problems.
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