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Large areas of tropical lands are being removed from agriculture and restored to address conservation
goals. However, monitoring the ecological value of these efforts at the individual land-owner scale is rare,
owing largely to issues of cost and accessibility. Traditional field-based measures for assessing forest
recovery and habitat quality can be labour intensive and costly. Here we assess whether remote sensing
measurements from lightweight unmanned aerial vehicles (UAV) are a cost-effective substitute for tradi-
tional field measures. An inexpensive UAV-based remote sensing methodology, ‘‘Ecosynth’’, was applied
to measure forest canopy structure across field plots in a 7–9-yr tropical forest restoration study in south-
ern Costa Rica. Ecosynth methods combine aerial images from consumer-grade digital cameras with com-
puter vision software to generate 3D ‘point cloud’ models of vegetation at high spatial resolutions.
Ecosynth canopy structure measurements were compared to field-based measures and their ability to
predict the abundance of frugivorous birds; key seed dispersers that are sensitive to canopy structure.
Ecosynth canopy height measurements were highly correlated with field-based measurements
(R2 P 0.85), a result comparable in precision to LiDAR-based remote sensing measurements. Ecosynth
parameters were also strongly correlated with above-ground biomass (R2 P 0.81) and percent canopy
openness (R2 = 0.82). Correlations were weaker with proportion-based measures such as canopy rough-
ness (R2 = 0.53). Several Ecosynth metrics (e.g., canopy openness and height) predicted frugivore presence
and abundance at levels of accuracy similar to those of field-based measurements. Ecosynth UAV remote-
sensing provides an effective alternate methodology to traditional field-based measures of evaluating for-
est structure and complexity across landscapes. Furthermore, given the volume of data that can be gen-
erated in a single flight plan, as well as the ability to use the technology in remote areas, these methods
could expand the scope of studies on forest dynamics and recovery when combined with field-based cali-
bration plots.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Secondary tropical forest cover is increasing rapidly in some
regions, particularly in hilly, montane landscapes that are marginal
for agriculture (Asner, 2009), due to both natural regeneration and
active restoration (Aide et al., 2013; Lamb, 2011). This trend is dri-
ven by a complex set of drivers and is facilitated by increasing
interest in the role that forest recovery may play in sequestering
carbon as part of efforts to reduce emissions from deforestation
and forest degradation (REDD+, Edwards et al., 2010; Harvey
et al., 2010). An ongoing challenge to such efforts, however, is
cost-effective monitoring, particularly for landowners at the local
level (De Sy et al., 2012).

Assessments of forest recovery in degraded landscapes typically
focus on a number of parameters such as the abundance of tree
recruits, community composition of vegetation, structural dynam-
ics such as plant height and branching architecture, or measures of
habitat quality in terms of their use by different animal guilds (e.g.,
Rodrigues et al., 2013). Structural complexity, and in particular
plant height, is often strongly associated with increased visitation
by avian frugivores, which can lead to greater tree seed dispersal
and seedling recruitment (Duncan and Chapman, 1999;
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McDonnell, 1986). Estimates of tree height, in conjunction with
diameter at breast height and wood specific gravity, can also be
used to estimate aboveground carbon accumulation or stock
(Chave et al., 2005). Accordingly, these measures can evaluate
how a particular site is responding to a restoration intervention
(Holl and Zahawi, 2014), determine if management practices have
impacted forests (Imai et al., 2009), or assess how biomass changes
in response to a particular pressure such as climate change
(Phillips et al., 2011). Collecting these data in the field, however,
is time consuming, expensive, and requires skilled field techni-
cians. Additionally, site access can be complicated if it involves
multiple landowners. Long-term monitoring of forest recovery
and restoration projects is critical to evaluating success and pro-
viding guidance on how to invest scarce resources, but such moni-
toring is commonly inconsistent or lacking (Melo et al., 2013; Ruiz-
Jaen and Aide, 2005), in part due to cost.

Alternate approaches to evaluate change in forest structure and
composition using remote sensing technology have shown promise
in alleviating the need for time consuming and costly field-meth-
ods, and may provide additional parameters for assessing habitats
that are not logistically feasible with on-the-ground field surveys
(Mascaro et al., 2014). Of the remote sensing technologies avail-
able, Light Detection and Ranging (LiDAR), which uses laser pulses
to determine distances between structures, as well as spectral
imaging (hyperspectral, multispectral), have all shown potential
value for ecological applications. LiDAR data can quantify structure
in three-dimensions (3D), and this information can be used to
Fig. 1. Overhead view of an Ecosynth non_GPS canopy height model (CHM) (a) of one fiel
panels show oblique views of the Ecosynth 3D-RGB point cloud for the island (b), passive
1 m grid of white points; approximate viewpoint indicated by black arrow. Photos (e) fr
landing approach at a field site.
evaluate habitat suitability for different fauna (Goetz et al., 2007;
Jung et al., 2012; Turner, 2014; Vierling et al., 2008), estimate tree
height with a high degree of accuracy (Andersen et al., 2006), and
determine aboveground biomass and carbon density (Asner et al.,
2012; Goetz and Dubayah, 2011; Lefsky et al., 2002) among other
applications. Although application of LiDAR to ecological problems
has shown great promise, conventional airborne LiDAR acquisi-
tions remain prohibitively expensive for most monitoring projects
and field-studies as a typical acquisition costs at least $20,000 per
flight, regardless of the size of the study area (Erdody and Moskal,
2010).

Recent advances in remote sensing using lightweight
unmanned aerial vehicles (UAV; Fig. 1) (Anderson and Gaston,
2013) are providing an alternate option using digital images and
computer software. With costs running from as low as $300 to a
few thousand dollars (Koh and Wich, 2012; Schiffman, 2014),
UAVs can potentially provide researchers and technicians with a
field-portable remote sensing device that enables low-cost collec-
tion of data when and where needed. The ‘Ecosynth’ methodology
(http://ecosynth.org/) processes large sets of overlapping digital
photographs using open-source software and computer vision
‘structure from motion’ algorithms to create 3D models of above-
ground vegetation (Dandois and Ellis, 2010, 2013). The information
is made available in the form of 3D ‘point clouds’, wherein each
individual data point has 3 coordinates describing the horizontal
and vertical position of a surface viewed within the photographs,
together with red–green–blue (RGB) colour information. Such
d site showing the three restoration treatments, each outlined by hatch marks. Right
(c), and plantation (d) treatments as in (a) with the non_GPS DTM represented as a

om left to right: hexacopter; prepping a hexacopter for a flight; and an automated
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point cloud data can then be used to estimate a number of ecologi-
cally important variables similar to those LiDAR technologies can
provide, including canopy height models, canopy structure and
roughness metrics (Dandois and Ellis, 2010, 2013), and can poten-
tially be used to estimate above-ground biomass or carbon accu-
mulation. Although Ecosynth technology has produced high
precision results for canopy height and structure in relatively
homogenous, forested terrain, the ability of these methods to accu-
rately assess vegetation structure and habitat quality in more
remote study sites with rough, undulating terrain and variable veg-
etation cover has not been evaluated.

A vital component of estimating canopy height and structural
metrics from any 3D remote sensing product is the ability to accu-
rately characterize ground topography in the form of a Digital
Terrain Model (DTM; Drake et al., 2002; Evans and Hudak, 2007).
For LiDAR data, this is carried out by classifying ‘ground’ and ‘non-
ground’ points using terrain-filtering algorithms. However, prior
research has shown that such algorithms do not work well when
applied to Ecosynth point clouds in areas of dense canopy cover
due to the paucity of understory points registered, such that the best
results are obtained when a high resolution LiDAR DTM is available
(Dandois and Ellis, 2010, 2013). No existing LiDAR DTM was avail-
able for the region, a situation that persists across most of the world
(Goetz and Dubayah, 2011). Accordingly, two alternate methods
were used to generate DTMs: (1) terrain filtering algorithms were
applied to Ecosynth point clouds; and (2) sub-meter precision dif-
ferential GPS elevations collected in the field were interpolated.

In this study, we use Ecosynth methods to derive measures of
canopy height, structural complexity, and canopy openness for
13 �1 ha restoration sites in a long-term study in a mountainous
area of southern Costa Rica. Ecosynth metrics from both models
were compared to field-derived structural data to evaluate their
accuracy. We also evaluated the capability of Ecosynth and field-
based structural measures to predict frugivorous bird presence
using data collected in restoration sites. We chose frugivores as
they are key seed-dispersers into restoration sites and lack of seed
rain is a primary limiting factor in tropical forest regeneration (e.g.,
Wijdeven and Kuzee, 2000).
2. Material and methods

2.1. Study Site

This study was carried out at 13 �1-ha restoration sites estab-
lished across a � 100 km2 area between the Las Cruces Biological
Station (8�470700N; 82�5703200W) and the town of Agua Buena
(8�4404200N; 82�5605300W) in southern Costa Rica. Sites are in the
tropical premontane wet forest zone (Holdridge et al., 1971), range
in elevation from 1060 to 1430 m a.s.l., and receive a mean annual
rainfall of 3.5–4 m with a pronounced dry season from December
to March. Mean annual temperature is �21 �C. All sites are sepa-
rated by a minimum of 700 m, and the surrounding landscape is
a highly fragmented mosaic of mixed-use agricultural fields, pas-
ture, and remnant forest patches. Sites are on highly uneven terrain
and most are steeply sloped (15–35�). All were farmed for
P18 years for crop cultivation, coffee farming, and/or cattle graz-
ing before restoration treatments were applied (Holl et al., 2011).

At each site we established three 0.25-ha (50 � 50 m) restora-
tion plots, each separated by a minimum of 5 m. Plots received
one of three randomized restoration treatments, which included
a ‘‘passive’’ strategy (cattle excluded, no seedlings planted), an
active ‘‘plantation’’ strategy (mixed-species trees planted through-
out plot), and an intermediate ‘‘island’’ strategy (same mixed-
species trees planted but in patches with unplanted spaces
between). We planted seedlings of four tree species, Erythrina
poeppigiana (Walp.) Skeels and Inga edulis Mart. [both Fabaceae],
Terminalia amazonia (J.F. Gmel.) Exell [Combretaceae], and
Vochysia guatemalensis Donn. Sm. [Vochysiaceae]. Planting density
was kept constant (�2.8 m distance between trees). Plantations
were uniformly planted, whereas the island treatment was planted
with six islands of tree seedlings of three sizes: two each of 4 � 4,
8 � 8 and 12 � 12 m [see Holl et al. (2011) for site setup details].
Sites were established between 2004 and 2006; nonetheless, mean
tree height and cover development overlapped substantially
among planting years because of high variability in tree growth
rates (Holl and Zahawi, 2014; Holl et al., 2011).

2.2. Data collection and analysis

2.2.1. Field measurements
2.2.1.1. Canopy height. Canopy height was measured with a Leica
Disto laser range finder (±1 cm) between June and August 2012.
In passive and plantation treatments, canopy height was assessed
at the corners of each of four 8 � 8 m permanent sampling quad-
rats (n = 16 points/treatment/site); one quadrat was randomly
placed within each of the four 25 � 25 m treatment quadrants
(excluding the outer 5 m buffer of the plot). Due to the patchy
planting methodology in islands, canopy height was assessed at
six points in each of the six islands; measurement locations
included island interior (2), perimeter (2), and exterior (2) (n = 36
points/island treatment/site). If no tree canopy was present, the
height of pasture grasses and shrubs was determined with a tape
measure. Average field height was calculated for each treatment
plot, hereafter field height.

2.2.1.2. Above-ground biomass. Above-ground biomass (AGB) was
determined for all treatment plots in a separate study in 2012
(Holl and Zahawi, 2014) using field-based measures of diameter
at breast height of planted and naturally-establishing trees
P1 cm diameter at breast height, wood specific gravity for individ-
ual species, and an above-ground biomass model for moist tropical
forest (following Chave et al., 2005). As height is considered a good
predictor of biomass (Drake et al., 2002; Lefsky et al., 2002), field
estimated AGB was compared to Ecosynth generated height esti-
mates to assess how accurately remotely sensed data can predict
biomass (Dandois and Ellis, 2010, 2013).

2.2.1.3. Canopy structure – openness and roughness. Percent canopy
openness within each treatment was estimated by taking den-
siometer readings at 1 m height within the permanent sampling
quadrats in June and July 2013 (n = 16 for plantation and passive
treatments; n = 30 islands). The standard deviation of field height
was used as a proxy for canopy roughness where higher values
indicate a more uneven canopy height.

2.2.1.4. Frugivorous birds. Frugivorous birds were surveyed at 12
sites on six separate occasions by a single observer in July and
November 2011; April, July and November 2012, and in April
2013 (Reid et al., 2014). Frugivores included species that consume
fruit as a significant portion of their diet (Appendix 1); seed preda-
tors (e.g., Psittacids) were excluded. To account for functional dif-
ferences within the frugivore guild (Wheelwright, 1985), we
divided frugivores into small (<100 g) and large (>100 g) cate-
gories. Restoration plots were actively searched for 20 min in ran-
dom order, and all birds seen or heard within the plot were
recorded. Surveys were conducted between sunrise (�5:30) and
9:00 AM. Birds flying over plots were not censused.

2.2.2. Remote sensing measurements
2.2.2.1. Image data collection. Images were acquired using a com-
mercially available, hobbyist ‘multirotor hexacopter’ UAV using
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the methods of Dandois and Ellis (2013) and based on the
Arducopter flight computer (3D Robotics Inc.; http://copter.ardupi-
lot.com/). The hexacopter (diameter 0.6 m; payload �1.5 kg;
Fig. 1e) was configured for aerial imaging with a Canon ELPH 520
HS ‘point-and-shoot’ digital camera pointed at nadir and calibrated
to an 18% grey card in full sun (Dandois and Ellis, 2013). The UAV
was equipped with a lithium-polymer electric battery allowing for
a maximum flight time of �15 min. The total cost for all UAV com-
ponents was USD $1500.

For each flight, the UAV took-off, ascended to a predetermined
flight altitude, flew a parallel track course by GPS control, and then
returned and landed at the launch site automatically. One site (3
treatment plots) was covered for each preprogramed flight path,
which included a 50 m buffer minimum with the following speci-
fications: altitude 30–40 m above the upper canopy surface; speed
6 m s�1; photographic overlap > 90% forward, 75% side to side;
camera frames 2 s�1; camera resolution 10 megapixels. All flights
were flown in July 2013.

2.2.2.2. 3D Point cloud generation. A Trimble GeoXT 2008 dif-
ferential GPS unit was used to record the elevation and launch
location of each flight by collecting one position per second for
the duration of UAV setup and flight (�22 min/site ffi 1300 posi-
tions), considered a nominal length of time for improving GPS loca-
tion accuracy (Andersen et al., 2009). Launch locations were
differentially corrected using Trimble Pathfinder software to a
nearby publicly available base station. Coordinates were exported
to the WGS84 UTM Zone 17 N projected coordinate system with
average precision of 0.35 m horizontal and 0.54 m vertical.

3D multi-spectral RGB point clouds (mean density
55 points m�2) were generated from the digital images collected
at each site using Agisoft-Photoscan computer vision Structure
from Motion software (http://www.agisoft.ru; v0.9.1 64-bit build
1703). Such software produces 3D reconstructions by applying
computer vision and photogrammetric algorithms to simultane-
ously solve for the location of images with respect to each other,
and to the objects viewed within them (see Dandois and Ellis
(2013) for further details). Point clouds were geo-referenced to
the WGS84 UTM Zone 17N projected coordinate system and
post-processed to noise-filtered point cloud products following
Dandois and Ellis (2013). Prior to running Agisoft-Photoscan, image
sets were trimmed to remove those recorded during take-off and
landing by manually identifying changes in UAV direction at the
start and end of a flight within the images (see Appendix 2 for fur-
ther details).

2.2.2.3. Digital terrain and canopy height models. Two methods were
used for generating DTMs: (1) terrain filtering algorithms were
applied to Ecosynth point clouds directly (non_GPS method); and
(2) an understory terrain surface was interpolated based on sub-
meter precision differential GPS elevations collected in the field
at each treatment (GPS method). Non_GPS DTMs were produced
for each site by terrain filtering with MCC-LiDAR software v2.1
(http://sourceforge.net/p/mcclidar/wiki/Home/; Evans and Hudak,
2007), which applies a threshold filter to the point cloud at differ-
ent scales to estimate whether a point is a local low point (ground)
or not (non-ground; see Appendix 2 for further details). GPS DTMs
were produced from GPS elevation points obtained using a Trimble
GeoXT differential GPS unit with sub-meter precision at each
50 � 50 m treatment plot corner and an additional 2–4 high and
low spots relative to an imagined plane, if the treatment terrain
could not be considered smooth. Non_GPS and GPS points were
interpolated separately into a 1 m gridded raster DTM by natural
neighbour interpolation in ArcGIS 10.1 (ESRI, Redlands, CA).
Separate canopy height models (CHM) were then derived for each
restoration treatment within each site using the two
aforementioned DTMs (hereafter non_GPS_CHM and GPS_CHM,
respectively) by subtracting the underlying DTM value from the
elevation of each point in the point cloud, which can be repre-
sented visually in a number of ways (Fig. 1a–d; see Appendix 2
for further details).

2.2.3. Data analysis
2.2.3.1. Canopy height and AGB. Summary statistics of canopy height
were extracted from each CHM for all points with height > 0 m on a
per treatment plot basis (n = 39 plots). Multiple height metrics were
extracted for each CHM including mean, minimum, maximum,
median, SD and CV, as well as a number of quartile heights
(Dandois and Ellis, 2010, 2013). Other proportion-based metrics
such as crown isle, defined as the proportion of a given treatment
where the canopy has a height greater than 2/3 of the 99th per-
centile of all heights within the treatment (Jung et al., 2012), were
also determined. The optimal height metric for each CHM was
selected after comparison to field height using simple linear regres-
sion and was based on the highest correlation coefficient (R2) and
lowest root mean square error (RMSE). The same height metrics
were regressed against field estimated above-ground biomass.
One-way ANOVA followed by Tukey’s HSD (P < 0.05) was used to
compare differences in Ecosynth generated height measures among
restoration treatments.

For both sets of CHMs, two outliers were identified based on a
Grubb’s test (Grubbs, 1969). For one outlier, height overestimation
was in part due to the fact that Ecosynth estimates of canopy
height quantify all points that fall within a treatment boundary
(when observed from above), which can include points from tree
crowns that have stems rooted outside the treatment and therefore
were not included in field surveys (Appendix 3). To remove these
points, the location of crown stems in relation to the treatment
boundary was determined by manually delineating tree crowns
and then estimating stem location as below the centroid of each
crown (Appendix 3). Ecosynth cloud points associated with crowns
for which stems fell on or outside the treatment boundary were
excluded from overall estimates of canopy height to resolve the
outlier problem. The second outlier was problematic due to a dense
surrounding closed canopy which likely impaired DTM filtering
and reduced the accuracy of GPS-based DTM measurements
(Evans and Hudak, 2007). This plot was removed from all further
analyses (n = 38 plots total).

2.2.3.2. Canopy structure – roughness and openness. A 1 � 1 m grid-
ded CHM raster surface was generated for each treatment plot
based on the median point cloud height value within each grid cell.
Canopy structure measurements for openness and roughness were
then computed following Jung et al. (2012) using Python (v2.7.2;
https://www.python.org/, accessed 2014-09-20) and the ArcGIS
10.1 ArcPy geo-processing module (ESRI, Redlands, CA). Ecosynth
canopy openness was computed as the proportion of the treatment
area that was < 2 m in height. Ecosynth canopy roughness was
computed as the average of the absolute deviation of each pixel
from the average CHM height across each treatment. One-way
ANOVA followed by Tukey’s HSD (P < 0.05) was used to compare
differences in canopy openness and roughness measures among
restoration treatments.

2.2.3.3. Frugivorous birds. Frugivore detections were analysed using
generalized linear mixed effects regression with the lme4 package
(version 1.0-6) in R (v 3.0.2) (Bates et al., 2014; R Development
Core Team, 2013). For small frugivores, we used the total number
of detections over the six survey periods as the response variable.
Large frugivores were detected less frequently, so a binary detec-
tion/no detection response variable was used. Field and Ecosynth
predictors were standardized by dividing by the mean in order to

http://copter.ardupilot.com/
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compare effect sizes. We included site as a random factor to
account for spatial autocorrelation in bird communities. Small fru-
givore detections approximated a normal distribution (Shapiro–
Wilk W = 0.978, P > 0.05), so we modelled them using a Gaussian
distribution with identity link. Large frugivore detections were
analysed using binary error and logit link. P-values for individual
predictors of small frugivore detections were produced using the
ANOVA function in the car package (Fox and Weisberg, 2011).
We used AIC scores corrected for small sample sizes to compare
models (Burnham and Anderson, 1998). Goodness-of-fit was
evaluated by comparing deviance from full models with deviance
from a null model that included the intercept and random site
effect.

3. Results

3.1. Canopy height and AGB

The median Ecosynth height metric was the best overall predic-
tor of field height for both canopy height models (GPS_CHM
R2 = 0.87, non_GPS_CHM R2 = 0.85) and was therefore used for all
subsequent comparisons. Mean Ecosynth height values were simi-
lar but slightly weaker (R2 = 0.83 & 0.85). Overall, both CHMs were
in close agreement and were correlated strongly with field height
(Fig. 2a and b) and field-determined above-ground biomass
(Fig. 2c and d).

Treatment level height comparisons were similar for the
GPS_CHM (F2,35 = 14.66, P < 0.0001) and non_GPS_CHM (F2,35 =
59.84, P < 0.0001), with plantation P islands > passive, depending
upon the model used (P < 0.05). The GPS_CHM, however, was a
much better predictor of field height and AGB in plantation treat-
ments (Table 1), despite consistently under-estimating field height
(Fig. 2a). Both models were poor predictors of field height and AGB
Fig. 2. Median Ecosynth cloud point canopy height models (GPS_CHM and non_GPS_CHM
(d). Regression is for all treatments (n = 38 points). Circled point is an outlier (Grubbs, 1
in the passive recovery treatment, the non_GPS_CHM especially so,
whereas they produced similar results for island treatment correla-
tions. The GPS_CHM was used for all subsequent calculations and
analyses, as it produced stronger correlations at the treatment
level (Table 1).

3.2. Canopy structure – openness and roughness (GPS_CHM only)

Ecosynth canopy openness varied significantly among treat-
ments (F2,35 = 12.83, P < 0.0001) and was highest in the passive
recovery treatment whereas plantations and islands were similar
(P < 0.05). Ecosynth canopy openness accurately predicted field-
measured percent canopy cover (Fig. 3). Ecosynth canopy rough-
ness differed among treatments (F2,35 = 8.67, P < 0.001) and was
significantly greater in islands than in the plantation and passive
treatments, which were similar (P < 0.05). However, canopy rough-
ness correlated somewhat poorly with the standard deviation of
field height (Fig. 4), which is used as an indicator of canopy rough-
ness in field-based measures. Correlations at treatment level were
no better (R2 = 0.20–0.51).

3.3. Frugivorous birds (GPS_CHM only)

Ecosynth and field measurements made similar predictions of
avian frugivore detections. For large frugivores, the most-
supported model included Ecosynth canopy openness (%
dev. = 0.28, P = 0.004; Appendix 1). Models using Ecosynth- or
field-height had nearly as much support (DAICc = 1.9, 2.9), and
vastly outperformed a model using categorical restoration treat-
ments (DAICc = 49.5). For small frugivores, the most-supported
model used field height (% dev. = 0.12, P < 0.001), however, similar
predictions were found for a model using the Ecosynth canopy
height model (DAICc = 3.7; Fig. 5).
) as predictors of field height (a) and (b), and above-ground biomass (AGB) (c) and
969) and was not included in analysis.



Table 1
A comparison of GPS and non_GPS canopy height models. Correlation coefficients (R2) and root mean square error values (RMSE; in parentheses) of both canopy height models are
presented for field height (FH) and above-ground biomass (AGB) for all treatments combined and per treatment.

Canopy height model GPS_CHM non_GPS_CHM

FH R2 and RMSE (m) AGB R2 and RMSE (Mg Ha�1) FH R2 and RMSE (m) AGB R2 and RMSE (Mg Ha�1)

All treatments (n = 38) 0.87*** (1.37) 0.83*** (9.18) 0.85*** (1.45) 0.81*** (9.79)
Passive (n = 13) 0.51* (0.85) 0.31* (4.49) 0.32* (1.00) 0.18 (4.88)
Island (n = 13) 0.77*** (1.13) 0.72** (9.08) 0.77*** (1.11) 0.81*** (7.41)
Plantation (n = 12) 0.94*** (0.81) 0.75** (11.47) 0.61* (2.14) 0.68** (12.92)

* P < 0.05.
** P < 0.001.

*** P < 0.0001.

Fig. 3. Ecosynth canopy openness (areas with vegetation < 2 m) derived from the
GPS_CHM as a predictor of percent canopy cover determined in the field with
densiometer readings taken at �1 m (n = 38 points, outlier not shown).

Fig. 4. Ecosynth canopy roughness derived from the GPS canopy height model
(GPS_CHM) and plotted against the standard deviation of field height (n = 38 points,
outlier not shown).

Fig. 5. A comparison of Ecosynth- and field-height models for predicting small
frugivore detections. The solid line shows the prediction of a model using field
height (% dev. = 0.21, p = 0.018); the dashed line shows the prediction of a model
using the Ecosynth GPS_CHM (% dev. = 0.24, p = 0.017). Appendix 1 shows a full
model comparison.
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4. Discussion

4.1. Canopy height and AGB

Ecosynth canopy height models (CHMs) were strong predictors
of field height regardless of whether a DTM was created directly
from the Ecosynth point cloud using a filtering algorithm
(non_GPS_CHM) or from differential GPS measurements of the ter-
rain (GPS_CHM). Similarly robust correlations were found with
field based estimates of above-ground biomass. Treatment-level
height comparisons from Ecosynth agreed well with field measure-
ments made earlier (Holl et al., 2013), and at levels comparable to
prior studies carried out in temperate deciduous forest plots when
a high resolution LiDAR DTM was available for determining CHMs
(Dandois and Ellis, 2013). Accuracy was also similar to what is gen-
erally achieved using LiDAR remote sensing (Andersen et al., 2006;
Lefsky et al., 2002). Taken together, results indicate that Ecosynth
remote sensing can accurately estimate forest structural metrics
across sample sites in patchy landscapes of mixed vegetation cover
even where high resolution, high accuracy LiDAR-generated DTMs
are unavailable. This is especially important given the current scar-
city of LiDAR coverage; the most popular online LiDAR database
covers an area equivalent to only �2% of the continental US
(OpenTopography, 2014).

Although the overall accuracy of both Ecosynth CHMs was
strong, errors were substantial when vegetation heights were
low (passive treatment). Weak correlations were likely due to the
lack of height variation among passive treatment plots, most of
which ranged between 1.5 and 4.0 m. DTM error was also propor-
tionally greater in low stature measures (Appendix 2), impacting
the accuracy of results. Accordingly, remote sensing of this kind
is less likely to be useful for assessing subtle differences in height
of low stature plants (for example in grasslands); further refine-
ment of the technique is needed for improving measurement accu-
racy in such systems. Nonetheless, strong differences were found
across the range of plots and treatments, which is the strength of
this application.

The two models were considerably more reliable in estimating
taller vegetation. Plantation canopy heights were predicted more
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accurately by the GPS_CHM, although values were consistently
underestimated. In turn, the non_GPS_CHM showed a weaker
correlation for plantations. Areas of steep slope, dense vegetation,
and continuous canopy cover can be challenging to estimate using
terrain-filtering algorithms (Evans and Hudak, 2007; Appendix 2).
Accuracy could be improved by laying out bright or reflective tar-
gets in gaps and outside of densely forested treatments, in order to
assist filtering algorithms and provide targets for GPS measure-
ments that can serve as ‘ground control’ for aligning point models
in 3D space (Wolf et al., 2014). In turn, a more advanced GPS sys-
tem with a nearby reference base station would further improve
point cloud georeferencing and terrain elevation estimates.
Nonetheless, producing a DTM from point clouds by filtering algo-
rithms (non_GPS_CHM) is tedious and time-consuming; GPS-based
DTMs (GPS_CHM) are preferable if the option exists, especially
given that these have slightly higher predictive ability and need
only be produced once.

Both models showed strong correlations with field based
above-ground biomass estimations, suggesting that the methodol-
ogy could be used to estimate carbon accumulation in recovering
habitats. This is an important result given the need for cost-effec-
tive ways for land-owners to estimate carbon storage and verify
the efficacy of REDD + programs (Asner et al., 2012; De Sy et al.,
2012). As with field-based measures, wood density would need
to be determined for target species to improve the accuracy of
calculations (Chave et al., 2005). A major strength of this applica-
tion, however, is the relative ease with which the rate of biomass
accumulation can be assessed once data have been calibrated with
field-based measures.
4.2. Canopy structure and frugivorous birds

Comparisons of cross-treatment differences in Ecosynth canopy
openness were similar to those quantified using field-based den-
siometer measurements (Holl et al., 2013), and a strong correlation
between Ecosynth and field-measured data was found. Ecosynth
canopy roughness comparisons showed that island treatments
have more heterogeneous canopy cover than passive or plantation
treatments, which is consistent with results of field-based mea-
sures (Holl et al., 2013). Despite similar treatment level results,
Ecosynth data correlated relatively poorly with the standard devia-
tion of height, which is often used as a field-based proxy indicator
of canopy roughness.

Ecosynth vegetation structure metrics significantly predicted
avian frugivore detections, and results were similar to predictions
using field-based metrics. Ecosynth-based variables, including
canopy height and openness, explained three times more
deviance in large frugivore detections than categorical restoration
treatments used in previous studies (Reid et al., 2012, 2014). This
is an especially important result as large frugivores, such as tou-
cans, are particularly important for seed dispersal as they are
capable of carrying large, late-successional tree seeds. These
results complement prior research, which showed that both
LiDAR- and Landsat-based measures of canopy complexity were
strong predictors of bird species richness (Goetz et al., 2007;
St-Louis et al., 2014) and bat activity (Jung et al., 2012). In gen-
eral, frugivore detections increased as canopy height and struc-
tural complexity increased, which coincides with prior studies
including one that used the framework of this study (Lindell
et al., 2012; McDonnell, 1986), but detections decreased as the
amount of large gaps, open space, and short vegetation increased.
This result was expected given that increased structural complex-
ity provides greater opportunities for niche partitioning as well
as greater overall habitat volume (MacArthur and MacArthur,
1961).
4.3. Application of ecosynth computer vision remote sensing to
monitor forest recovery

Ecosynth is a portable remote sensing technology suitable for
individual use as a field tool for measuring and mapping canopy
height, carbon accumulation, and canopy complexity as a proxy
measure of frugivorous bird abundance across recovering tropical
habitats. Given the volume of data that can be captured across
landscapes, Ecosynth methods have the potential to reduce field
time and thereby expand the scope of projects otherwise restricted
by the logistics of more traditional field-based surveys. Once the
overall workflow has been established, data on canopy structure
at the scale of 10’s of hectares can be turned around in as little
as a day. An added strength is the ability to capture data in remote
areas where field-surveys are hampered by logistical constraints
and time-consuming methods, e.g., on very steep slopes.
Nevertheless, measurements made using Ecosynth and other
remote sensing methods must still be calibrated against field-
based measures to ensure accuracy and results are still constrained
by the quality of DTMs available for estimating heights (Dandois
and Ellis, 2013).

Ecosynth UAV missions are carried out at relatively smaller
spatial scales (i.e., tens of hectares) as compared to LiDAR
missions, which tend to cover 10’s to 1000’s of square kilo-
metres. This is a key strength of Ecosynth methods, making them
ideal for plot-level assessments in the field, while enabling the
capture of highly specific canopy structural and spectral traits
at high spatial resolutions and high temporal frequencies (e.g.,
weekly, monthly). For example, Ecosynth has been used to
observe the dynamics of forest canopy structure and spectral
phenology at the scale of individual tree crowns in temperate
deciduous forest plots (Dandois and Ellis, 2013). Similar observa-
tions can be made in tropical habitats where repeated Ecosynth
measures of canopy structural traits, combined with species
abundance observations, could provide valuable insights on spe-
cies phenology that would be challenging to collect by field
methods alone.

Ecosynth point clouds can be used to compute canopy structure
metrics that are difficult to estimate using traditional field-based
measures. For example crown isles, sharp changes in the height
of canopy crowns, or the presence or density of canopy and sub-
canopy layers at different heights of interest (e.g., 5–10 m;
>15 m; <10 m) were all extracted from Ecosynth data with relative
ease (Appendix 1). Some of these metrics, such as a <5 m canopy
openness cutoff, were found to be important for predicting frugi-
vore abundance. The field of view also differs – with traditional
ground-based measures that ‘look’ up and remote sensing tech-
niques, such as Ecosynth, that look down. Here, Ecosynth metrics
may more accurately reflect how treatments are perceived by tar-
get groups of interest that also look down, such as frugivorous
birds. For example, in one field plot of this study, trees rooted out-
side the plot (and hence excluded in field surveys) had canopies
that covered areas inside the plot boundary. Ecosynth quantified
this discrepancy in terms of canopy structure and height metrics
that differed significantly from field-based measures, creating an
apparent ‘outlier’ but one that might more accurately reflect the
perceived view of frugivorous birds (Appendix 3).

Additional metrics not evaluated in this study, such as com-
bined 3D structural and spectral information, may highlight
aspects of canopy habitat that are important to species abundance
and diversity of fauna (e.g., Davies and Asner, 2014) but are diffi-
cult to observe without frequent and possibly intrusive field obser-
vations. Deriving measures of the timing and abundance of fruits
and flowers, the age of leaves, tree structural architecture, or the
presence of snags, are all important ecosystem function indicators
(e.g., Murcia, 1997; Reich et al., 2004; Thies and Kalko, 2004) and
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have the potential to be derived from Ecosynth 3D-RGB point
clouds (Dandois and Ellis, 2013).

Still, as with all techniques, there are challenges. Foremost is
that Ecosynth UAV methods require a degree of technical skill that
is not mastered quickly. Though most flight sequences can be pre-
programmed, it is still necessary to learn basic flying skills, particu-
larly in awkward take-off and landing environments, and if the
need to manually takeover a flight arises. Second, substantial back-
ground knowledge, most efficiently gained by professional train-
ing, is needed in order to program a flight, process images, and
georeference and process point cloud datasets. This includes the
ability to use GIS and other fairly sophisticated remote sensing
software. Third, some mechanical understanding of UAVs is useful,
especially for work in remote areas where technical support may
be absent. Fourth, and perhaps most importantly, the accuracy of
canopy height data is strongly dependent on accurate terrain data,
which are not always available. Although two different methods
for acquiring terrain data were available, and both worked well
here, this may not be the case in sites completely covered by dense
vegetation and in areas where GPS base stations are not available
to assist with differential correction of GPS measurements made
in the field. Finally, although UAVs may ultimately prove less
expensive than field surveys, the methodology can rapidly become
expensive should accidents occur inflight (or otherwise). Strong
familiarity with UAV work in the field is essential to avoid this, ide-
ally coupled with redundant equipment on site.

Ecosynth UAV-based remote sensing can be used to accurately
characterize habitat and biomass metrics at small spatial scales,
providing field scientists with a LiDAR-like remote sensing tool
that can be deployed on demand in the field. The methodology is
highly promising and provides ecologists with a powerful tool to
assess and monitor forest dynamics in many regions. While not a
replacement for field-based surveys, the mobile nature of the tech-
nology and its relative ease of application mean that its use can
greatly expand the reach and breadth of most field-based projects.
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