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Abstract

As a conventional energy industry, the petroleum industry is responsible for supplying over half of the
world’s energy. Facilitating sustainable development for petroleum energy production remains crucial.
Data methods have emerged as powerful tools to advance sustainability by enabling efficient resource
management and risk mitigation. However, the reliable implementation of data-driven methods relies
on high-quality data, necessitating the verification of data integrity on substantial data volumes. To this
end, this poster paper presents our ongoing research, leveraging ontologies and knowledge graphs as
shared knowledge representation, and provides preliminary results on data integrity verification. Based
on the ontologies, we formulate domain knowledge integrity constraints and test three technologies of
integrity verification: Python, PySpark, and SPARQL, for exploring future potential industrial adoption.
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1. Introduction

Background. With the development of technology, society is becoming increasingly aware of
the importance of sustainable development. As a conventional energy industry, the petroleum
industry is still responsible for supplying over half of the world’s energy [1]. Therefore, it is
still extremely important to facilitate sustainable development for petroleum energy production.
Being one of the most proactive industries embracing new technologies, the petroleum industry
is widely adopting data-driven approaches to enhance energy production efficiency and safety,
thereby reducing potential losses and environmental pollution during the production process.
Currently, data-driven artificial intelligence (AI) has been widely applied to the petroleum
industry to increase production efficiency and safety, from enhanced oil production and recovery
to undesired event prediction [2]. This brings benefits such as reducing costly well tests,
mitigating risks, increasing safety and operation efficiency. As results, data-driven Al contributes
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Figure 1: (a) a simplified depiction of an oil production well example (S=sensor, V=valve, Q=fluid flow
rate). (b) schematic illustration of the proposed ontology (partial) for petroleum production

to suistainability by improving energy production efficiency, and reducing accidents with severe
environmental damage, such as oil leaks.

Challenge. The performance of data-driven approaches heavily relies on the data quality.
Thereby, it presents an important challenge in ensuring the integrity of the data, which is
crucial for data-driven solutions to deliver reliable predictions. In petroleum production, the
purpose of collecting data from various sensors is to allow domain experts to analyse and
make informed decisions based on their knowledge and experience. In this context, we discuss
one of the issues of data integrity: the data should follow certain constraints of physical laws.
This is in addition to other issues, such as missing values, sensor precision errors, etc. For
verifying the constraints of physical laws, domain knowledge plays an important role, and
should be incorporated in the integrity checking. Semantic technology is suited here due to its
transparency, which the domain experts tend to have a high chance to trust because they can
observe that their domain knowledge is used and how it is used.

Our approach. In this poster paper, we present our ongoing research on a semantic solution
for data integrity verification for petroleum industry. We develop a draft of a petrolum ontology
aligned with upper ontologies as shared representation for data integration and knowledge
representation; we construct knowledge graphs for transparent and unified human understand-
ing; we experiment technologies for data integrity verification, including Python, PySpark and
SPARQL. We provide preliminary experiment results and discussion of adoption.

2. Data and Knowledge Representation

Ontology for petroleum production. In the petroleum domain, ontologies for petroleum
exploration [3], reservoir [4], offshore production plant [5], subsurface fault [6], and petroleum
risk assessment [7]. To meet our needs of verifying data integrity for the petroleum industry,



we develop a draft of an ontology for petroleum production wells. Fig. 1a presents a simplified
visual depiction of oil production wells. The fluid flow depicted in the figure originates from
subsurface sub-wells, then merges towards the main well, and in the end reaches the offshore
production platform. Fig. 1b depicts our petroleum ontology written in OWL 2, which includes
15 classes, 11 object properties, and 2 datatype properties. It contains several classes that are
essential to the industry, including well section and subwell role. The ontology further includes
core relations such as upstreamTo and downstreamTo, which facilitate the representation of the
spatial locations of each well section and indicate the flow direction of the fluid supplied from the
production zone. To ensure compatibility and interoperability, our ontology has been aligned
with a domain ontology: the Offshore Petroleum Production Plant Ontology (O3PO) [8], which
is built upon the Basic Formal Ontology (BFO) [9], Relation Ontology (RO) [10], and Industrial
Ontologies Foundry Core [11], and Flow System Ontology (FSO) [12]. By using these classes
and relations, our ontology provides a structured framework for integrating data, renaming
the variables, and capturing and organising relevant knowledge and data, and supporting the
integrity verification.

Data from petroleum production wells. The data collected from the sensors in the production
wells are typically presented in relational tables, including various sensor measurements on
the range of well sections from the bottom-hole to the wellhead. These measurements include
parameters such as pressure, temperature, and flow rate of each well section. Additionally, the
collected data can contain other important equipment information, such as the ratio between
the choke opening rate and flow coefficients. These relational tables provide a structured format
for data-driven approaches to make predictions.

Knowledge graphs for petroleum wells. Based on the proposed ontology, we construct
knowledge graphs (KG) (Fig. 2) with domain experts to illustrate the production wells, well
sections, well sensors, and their relations. These KGs serve as a flexible foundation to formalise
the domain knowledge , and to support a transparent shared understanding between the
domain experts, semantic experts, data scientists, etc. The KGs can also have the potential for
sophisticated reasoning, for example, using domain-knowledge-based constraints to detect subtle
anomalies, identify potential erroneous data, and ensure the consistency of the delivered data.

3. Integrity Verification with Preliminary Evaluation

Integrity constraints. The integrity constraints play a crucial role in ensuring the quality
of petroleum data. After renaming the features, we can formulate these constraints based
on domain knowledge for verifying the data integrity. This allows validation of the sensor
measurements, ensuring that they align with physical laws and empirical expectations. Here
we give three examples (Fig. 2b):

Example 1: the flow rate at any position within a well must consistently equal the flow rate of
its upstream or downstream locations.

Example 2: the total flow rate of the main well should precisely match the sum of the flow rates
of all merged (or split) wells.

Example 3: for each well, both the flow rate and pressure consistently adhere to the principles
outlined in the Bernoulli function.



Examplel: Foreach well section, the flowrate of fluid is always
equal to upstream or downstream fluid flowrates.
Q; = Qj for i,j from the same Well
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Well 2 :hasWelllSectionlQ 2ql ;
thasWelllSection2Q 292 ;
:thasWelllSection3Q 293 .
FILTER (?gl !'= 2g2 || 2q2 != 293 || ?2ql != 2g3)}

f

BFO: BFO:hasRol
hasRol

:partO:

>  pressure
sensor

RO:

Well 2
—» temperature
sensor

Example2: The sum of the subwell fluid flowrates equals to the fluid
flowrate of the main well. Q.= Qui
SELECT ?ent WHERE { ‘ wi

?ent a :Entity ;
| N Yi‘:lslulre thasWelllQ 2ql ;
P 1 :hasWell2Q 292 ;
Sensor :hasMainWellQ 2g0 .

Well 1 FILTER ( ABS(?q0 - 2gql - 2g2) > 0.01)}

BFO:hasContinuant
PartAtSomeTime

FSO:feedsFuildTo

5
: N

[ = UETTIECRS Example3: Constraint according to Bemoulli function:
S sensor

upstreamTo Q =Cl*cv*y(Puc—Pac)/C2
SELECT ?ent WHERE {

?ent rdf:type :Entity ;
:hasChokeValue ?cv ;
:hasChokeUpstreamP ?pl ;
:hasChokeDownstreamP ?p2 ;
thasWelllSectionlQ ?q .

BIND (0.0007598* 0.0007598* 2cv * 2cv * (2pl-
— ?p2)/1.02 AS ?y)
FILTER (ABS(?q*2q - 2y) < 0.01)}

Figure 2: (a) Schematic illustration of the production KG, (b) example constraints formulated both
in equations and SPARQL queries. The “strict equal” is relaxed to account for calculation errors. The
missing values are handled by other queries, and we assume all values exist here. C1, C2 in Example 3:
constants in Bernoulli function.
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Figure 3: (a) Running time of verification (x-axis: million records) (b) data size along number of records.

Experiment dataset. To test the verification performance, we generate a large number of data
with a random ratio of integrity violations regarding examples 1-3 in Fig. 2b (real data contain
few violations) based on real production data, provided by two world-leading energy companies.
In total, we generated five such tables with sizes ranging from 145MB to 1.45GB, containing from
1 million to 10 million records. In addition, we generate corresponding KGs (Fig. 2a) following
our ontology. These KGs are saved as Turtle files ranging in size from 440MB to 4.4GB.

Implementation. We implement the constraints in Example 1-3 with (a) Python, because it

is relatively easy to learn and it is popular among the petroleum domain experts; (b) PySpark,
for its similarity to Python and that it unlocks the potential of parallelizable computation;



(c) and SPARQL, for its popularity in the semantic community. The Python implementation
uses common libraries such as Pandas, Numpy. PySpark is the Python API for Apache Spark,
which is a distributed computing framework that enables parallel computation for dealing with
large-scale datasets. The SPARQL is implemented with Jena and Fuseki. Jena is an open-source
Java framework for semantic applications, while Fuseki is for setting SPARQL endpoint.

Results and discussion. From the results (Fig. 3) we can see that the Python running time
increases significantly when the data size grows, while the running time for PySpark and
SPARQL changes insignificantly. We postulate that the reason is that the data size is under a
certain threshold so that the most consumed time for PySpark and SPARQL is used for loading
the environment, not for querying. The results indicate that both PySpark and SPARQL have
the potential for verifying large datasets. Yet, note that for generating the ttl files for SPARQL
to query, it takes a large amount of time (some minutes to some hours). Besides, many domain
experts are familiar with Python, but unfamiliar with Jena Fuseki and SPARQL. We expect they
tend to learn writing constraint queries in PySpark than in SPARQL. All these factors need to
be taken into account in considering industrial adoption.
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