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Abstract

Background: Aging is believed to have a close association with cardiovascular diseases, resulting in various
pathological alterations in blood vessels, including vascular cell phenotypic shifts. In aging vessels, the microRNAMIRNA)-
mediated mechanism regulating the vascular smooth muscle cell (VSMC) phenotype remains unclarified. MiRNA microarray
was used to compare the expressions of MiRNAs in VSMCs from old rats (0VSMCs) and young rats (YWSMCs). Quantitative
reverse transcription real-time PCR (qRT-PCR) and small RNA transfection were used to explore the miR-542-3p expression in
oVSMCs and yVSMCs in vitro. Calcification induction of yWSMCs was conducted by the treatment of 3-glycerophosphate
(B-GP). Alizarin red staining was used to detect calcium deposition. Western blot and gRT-PCR were used to investigate the
expression of the smooth muscle markers, smooth muscle 22a (SM22a) and calponin, and the osteogenic markers,
osteopontin (OPN), and runt-related transcription factor 2 (Runx2). Lentivirus was used to overexpress miR-542-3p and bone
morphogenetic protein 7 (BMP7) in yWMSCs. Luciferase reporter assay was conducted to identify the target of miR-542-3p.

Results: Compared with yVSMCs, 28 downregulated and 34 upregulated miRNAs were identified in oVSMCs. It
was confirmed by gRT-PCR that oVSMC expressed four times lower miR-542-3p than yVSMCs. Overexpressing
miR-542-3p in yVSMCs suppressed the osteogenic differentiation induced by B-GP. Moreover, miR-542-3p
targets BMP7 and overexpressing BMP7 in miR-542-3p-expressing yWVSMCs reverses miR-542-3p’s inhibition of
osteogenic differentiation.

Conclusions: miR-542-3p regulates osteogenic differentiation of VSMCs through targeting BMP7, suggesting that the
downregulation of miR-542-3p in 0VSMCs plays a crucial role in osteogenic transition in the aging rat.
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Background causes various pathological alterations in blood vessels,

Aging is believed to have a close association with cardio-
vascular diseases [24]. In elderly patients, the outcomes
of vascular angioplasty and stenting are poorer than
those in younger patients [3] and also with a fairly
higher risk of complication [10, 29]. Vascular aging
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including chronic inflammation, vascular cell phenotypic
shifts, and structural modifications, which lead to re-
modeling of the vascular wall with increased thickness
and stiffness and drive arteriosclerosis and atheros-
clerosis [16].

Vascular smooth muscle cells (VSMCs) are contractile
cells found in blood vessels and express smooth muscle
markers, including smooth muscle a-actin (SM «-actin),
smooth muscle 22« (SM22a), and calponin. VSMCs are
not terminal differentiated cells, which can switch from
the contractile phenotype to the synthetic phenotype in
response to local cues and give rise to the development
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of aberrant remodeling of vessels [7]. Increasing evi-
dence indicates that aging is a crucial factor promoting
the phenotypic shift of VSMCs and results in aging-
related deterioration of blood vessels [17, 25]. The dedif-
ferentiation of VSMCs into osteoblast-like cells has been
demonstrated to be associated with vascular calcification
in the vessel wall [7]. The osteogenic transition of
VSMCs is accompanied by the gain of osteogenic
markers, such as runt-related transcription factor 2
(Runx2), osteopontin (OPN), and alkaline phosphatase
[7]. The triggers of the osteogenic transition of VSMCs
have been extensively studied, and many risk factors are
recognized, including the loss of calcification inhibitors,
senescence, cell death and damage, oxidative stress,
mechanical stress, and mitochondrial dysfunction [7].
However, in aging vasculature, the mechanism driving
the osteogenic transition of VSMCs remains unclarified.

MicroRNAs (miRNAs) are non-coding, single-stranded
RNA molecules and function in RNA silencing and post-
transcriptional regulation of gene expression, regulating a
number of physiological and pathological processes. Within
the cardiovascular system, altered miRNA expression has
been found in the blood of patients [2], and certain miRNAs
have been found to be involved in various cardiovascular dis-
eases, such as myocardial infarction, arrhythmias, hyperten-
sion, and atherosclerosis [33]. In the vascular wall, aging is
associated with endothelial dysfunction and a heterogeneous
phenotypic shift of VSMCs. A number of miRNAs have been
demonstrated to be associated the dysfunction of endothelial
cells in aging [13, 23, 40]. However, the mechanism that
miRNAs affect phenotypic transition in aging VSMCs is
incompletely defined.

In the present study, the expressions of miRNAs in
VSMC:s from old rats (0VSMCs) and young rats (yVSMCs)
were compared using miRNA microarray, and 28 downregu-
lated and 34 upregulated miRNAs were identified in
oVSMCs compared with those of the yVSMCs. We focused
on miR-542-3p on the basis of microarray detection and
demonstrated that miR-542-3p inhibited osteogenic transi-
tion of yVSMCs induced by [-glycerophosphate (3-GP)
through targeting bone morphogenetic protein 7 (BMP?7).
Our study suggests that, in aging rats, the decrease in miR-
542-3p expression promotes the osteogenic transition in
VSMC:s by targeting BMP7.

Materials and methods

Cell culture

Thoracic aortas of rats were harvested and VSMCs were
isolated as previously described [31]. Cells from passage
3-5 were used for the experiments.

Microarray analysis
Approximate 1.5 x 10° cells were plated into 12-well
plates precoated with collagen I (Thermo Fisher
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Scientific). After synchronization for 24 h by serum starva-
tion, VSMCs were cultivated in DMEM supplied with 10%
FBS. After 2 days, total RNA was extracted as previously
described [28]. Samples were labeled, hybridized, and
scanned (Kang-Chen Bio-tech, Shanghai, China), and im-
ages were imported into GenePix Pro 6.0 software for grid
alignment and data extraction.

Small RNA transfection

Approximately 2.5 x 10° VSMCs were plated into 6-well
plates. After 24 h, transfection was performed with 50-
nM anti-miR-542-3p (yVSMCs), 50-nM pre-miR-542-3p
(0VSMCs), or the associated negative controls, using
Lipofectamine RNAiIMAX (Invitrogen, Carlsbad, CA,
USA). After 12h, fresh DMEM was added and RNA
extraction was performed 24 h later.

Quantitative reverse transcription real-time PCR

To quantify the miR-543-3p expression, 1.0 pug of total
RNA was reverse transcribed using a TagMan miRNA Re-
verse Transcription kit (Applied Biosystems, Shanghai,
China). miR-542-3p expression was measured using a
miR-542-3p TagMan microRNA assay (Applied Biosys-
tems). The expression of miR-543-3p was quantified using
the 272" relative quantification method. The relative
expression levels of miR-542-3p were determined by
normalizing to that of housekeeping gene Ue6.

To detect the expression of smooth muscle-related
genes and calcification-related genes, quantitative real-
time PCR (qRT-PCR) was conducted following the reverse
transcription. The primer sequences used for SM22a, cal-
ponin, OPN, Runx2, and glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) are listed in Table 1. The relative
mRNA expressions were determined by normalizing to
that of the housekeeping gene GAPDH.

Luciferase reporter construction and luciferase activity
assay

BMP7 mRNA was predicted to be a target of miR-542-3p
by the use of TargetScan and Miranda. The 3'-UTR of
BMP7 containing the predicted targeting site for miR-
542-3p was synthesized (BMP7 WT). A mutated sequence
was synthesized as well by changing 2 nucleotides (BMP7
MUT). The 3'-UTR of the luciferase reporter containing
the BMP7 WT sequence or the BMP7 MUT sequence
was inserted into the pmirGLO vector (Promega, Beijing,
China). The pre-miR-542-3p was synthesized and inserted
in the pSilencer4.l vector (pSilencer4.l-miR-542-3p,
Invitrogen).

For the luciferase assay, about 10° HEK293 cells were
seeded into 12-well plates. Cells were then co-
transfected with BMP7 WT vector or BMP7 MUT vec-
tor, and pSilencer4.1-miR-542-3p or pSilencer4.1 empty
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Table 1 Primer sequences for real-time PCR
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Genes 5-3 Primers Product Reference sequence
Size (bp)

SM 22a Forward CCCGCCCTCCATGGTCTTCAAG 165 NM_031549.1
Reverse GCCAAACTGCCCAAAGCCATTAC

Calponin Forward CGGGCACCAAGCGGCAGATCT 165 NM_031747.1
Reverse CCGGGGTCAGGCAGTACTTGGGA

OPN Forward CATCAGAGCCACGAGTTTCA 274 NM_012881.2
Reverse TCAGGGCCCAAAACACTATC

Runx2 Forward CAGACCAGCAGCACTCCATA 178 NM_001278483.1
Reverse CAGCGTCAACACCATCATTC

GAPDH Forward AAGTTCAACGGCACAGTCAAGG 139 NM_017008.4
Reverse CGCCAGTAGACTCCACGACATA

vector. Luciferase activity assay was performed after 24
h, using the Dual-Luciferase Reporter System (Promega).

Lentivirus construction and transduction

Lentivirus was constructed and transduced into yVSMCs
to overexpress miR-542-3p or BMP7. Briefly, the coding
sequences of target cDNAs were subcloned into the
pCDH vector and co-transfected into HEK293T cells
with psPAX2 and pMD2.G using Lipofectamine 2000
(Invitrogen). Virus particles were collected from the
supernatant 48 h after transfection and used for the in-
fection of yVSMCs. The infected yVSMCs were incu-
bated in growth medium in the presence of puromycin
for stable selection. Cells infected by virus particles gen-
erated by empty pCDH vector were used as control.

Calcification induction and Alizarin red staining

To induce calcification, yVSMCs stably expressing miR-
542-3p were cultivated in growth medium supplemented
with 10-nM B-GP (Sigma-Aldrich; Merck KGaA, Darm-
stadt, Germany). After a 7-day incubation, yVSMCs were
fixed with 95% ethanol for 30 min at room temperature
and stained with 1% Alizarin red (Sigma-Aldrich, Merck
KGaA) for 15 min. After washing, the calcium deposition
was photographed under an inverted phase-contrast
microscope (Olympus, Tokyo, Japan). The calcium
deposition was quantified by dye elution as previously
described [9].

Western blot

VSMC:s lysis was conducted using RIPA lysis buffer (Beyo-
time, Shanghai, China) supplied with 1% protease inhibitors.
The proteins were separated by electrophoresis and trans-
ferred onto PVDF membranes by electroblotting for 3h at
150 mA. Then, the membranes were blocked for 1 h at room
temperature in Tris-buffered saline containing 0.1% Tween
20 (TBST) and 5% skim milk. The membranes were incu-
bated with primary antibodies against BMP7 (Abcam, Cam-
bridge, MA), SM22a (Abcam), calponin (Abcam), OPN (Cell
Signaling Technology, Danvers, MA, USA), Runx2 (Cell

Signaling Technology), and GAPDH (ZSGB-Bio, Beijing,
China), and then the HRP-conjugated secondary antibody
(MultiSciences, Beijing, China). Chemiluminescent signals
were detected and quantified by densitometry using Quantity
One Bioanalysis software (Bio-Rad).

Statistical analysis

Data were presented as means + standard deviation
(SD). For the comparison of groups, Tukey’s multiple
comparisons test was used following ANOVA. P < 0.05
was considered statistically significant.

Results

miRNA expression in oVSMCs and yVSMCs

In our experiment, 260 miRNAs were statistically ana-
lyzed using miRNA array. Our results indicated 28
downregulated and 34 upregulated miRNAs in oVSMCs
when comparing with yVSMCs (Additional file 1: Table
S1 and S2). According to the microarray data, miR-542-
3p expression was reduced 14-fold in oVSMCs. Given
that the effect of miR-542-3p in VSMC senescence and
its relationship with cardiovascular diseases has barely
known, we focused on miR-542-3p in this study.

To confirm the miRNA microarray data, qRT-PCR
was used to explore the miR-542-3p expression levels in
yVSMCs and oVSMCs. We found that miR-542-3p was
four times lower expressed in oVSMCs versus that in
yVSMCs (Fig. 1a). Furthermore, anti-miR-542-3p trans-
fection into yVSMCs resulted in a significant down-
regulation of miR-542-3p expression (Fig. 1b), while
transfection of pre-miR-542-3p into oVSMCs gave rise
to a significant upregulation of miR-542-3p (Fig. 1c).
These data suggested that miR-542-3p was abundant in
yVSMCs whose expression was decreased within the
senescence of VSMCs.

miR-542-3p inhibited osteogenic transition in yVSMCs
induced by B-GP

To explore the effect of miR-542-3p on the osteogenic
transition, miR-542-3p was overexpressed in yVSMCs
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Fig. 1 miR-542-3p expression in yWMSCs and oVMSCs detected by qRT-PCR. a miR-542-3p expression was approximately downregulated 4-fold in
oVSMCs comparing with yWSMCs. n = 3. Versus yVSMCs, *p < 0.05. b Transfection of anti-miR-542-3p into yWSMCs (yVSMCs+anti-miR-542-3p)
significantly downregulated the miR-542-3p expression. n = 3. Versus yVSMCs and yVSMCs transfected with its associated negative control
(YWSMCs+vehicle) *p < 0.05. ¢ Transfection of pre-miR-542-3p into 0VSMCs (0VSMCs+pre-miR-542-3p) significantly upregulated the miR-542-3p
expression. n = 3. Versus oVSMCs and oVSMCs transfected with its associated negative control (0VSMC+vehicle) *p < 0.05

using lentivirus, and the miR-542-3p-expressing cells were
cultured in growth medium containing 10 nM -GP for 7
days to induce calcification. Western blot data showed
that after p-GP induction, the expressions of the smooth
muscle markers SM22«a and calponin were significantly
higher in yVSMCs overexpressing miR-542-3p than those
of yVSMCs (control) and yVSMCs infected with empty
virus (vector) (Fig. 2a and b). After 3-GP induction, the
osteogenic markers OPN and Runx2 were expressed in
control and vector yVSMCs. However, overexpressing
miR-542-3p in yVSMCs decreased the OPN and Runx2
expressions induced by 3-GP (Fig. 2a and b).

Calcium deposition assay by Alizarin red staining was
performed to morphologically confirm osteogenic differ-
entiation. After B-GP induction, obvious calcium nod-
ules were observed in control and vector yVSMCs, while
in miR-542-3p—overexpressing yVSMCs, the calcium
nodules were much fewer than in the other two groups
(Fig. 2c). We further quantified the calcium deposition
by eluting the Alizarin red and determining the optical
density of the eluates. Consistent with the morphological
data (Fig. 2c), these results demonstrated that the

calcium deposition in miR-542-3p yVSMCs was sup-
pressed when compared with that in control and vector
yVSMCs (Fig. 2d). In general, these findings demon-
strated that miR-542-3p overexpression could restrain
the osteogenic phenotype of yVSMCs induced by B-GP.
Thus, our results suggested that miR-542-3p might play
a crucial role in regulating the osteogenic transition of
VSMCs with senescence.

miR-542-3p targeted BMP7

BMPs were discovered by their capability to induce bone
formation. To explore the potential targets of miR-542-3p
involved in osteogenic transition of VSMCs, Targetscan
and Miranda databases were used, and BMP7 was identi-
fied as a potential target. Therefore, BMP7 expression and
its correlation with miR-542-3p were examined in
yVSMCs induced by B-GP. As shown in Fig. 3a and b,
after 7 days of induction by f-GP, yVSMCs overexpressing
miR-542-3p expressed a significantly lower level of BMP7
than control yVSMCs and yVSMCs infected with empty
virus, suggesting that miR-542-3p could suppress BMP7
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Fig. 2 miR-542-3p inhibited osteogenic transition in yVSMCs induced by 3-GP. Control yWSMCs, yVSMCs infected with an empty virus vector, and
YVSMCs stably expressing miR-542-3p (miR-542-3p) were induced to calcify by 3-GP. a After 7 days of induction, expressions smooth muscle
markers (SM22a and calponin) and osteogenic markers (OPN and Runx2) were investigated by Western blot. GAPDH was used as loading control.
b Quantification of protein expressions by densitometric analysis. n = 3. Versus control and vector yVSMCs, *p < 0.05 and **p < 0.01. ¢ After 3-GP
induction for 7 days, calcium deposition was detected by Alizarin red staining. d Quantification of calcium deposition. n = 3. Versus control and
vector yVSMCs, **p < 0.01

expression in yVSMCs induced by B-GP, and that BMP7
is a potential target of miR-542-3p.

To confirm whether BMP7 is targeted by miR-542-3p,
a luciferase reporter assay was performed using BMP7
3'-UTR constructs (Fig. 3c). The 3'-UTR of the lucifer-
ase reporter was generated containing BMP7 WT se-
quence or BMP7 MUT sequence. The luciferase assay
showed that the overexpression of miR-542-3p strongly
inhibited the luciferase activity in the BMP7 WT group
but did not the BMP7 MUT group (Fig. 3d), which de-
monstrated that BMP7 is a direct target of miR-542-3p.

miR-542-3p regulated osteogenic transition by targeting
BMP7

To explore whether the targeting of miR-542-3p to
BMP?7 regulating the osteogenic transition of VSMCs,
yVSMCs stably overexpressing miR-542-3p (miR-
yVSMCs) were used for transduction with BMP7-
overexpressing lentivirus or control empty virus. The ex-
pression of smooth muscle markers SM22a and calponin
was significantly downregulated by overexpressing
BMP7 in miR-yVSMCs, while the mRNA expression of
osteogenic markers OPN and Runx2 was strongly in-
creased in BMP7-overexpressing miR-yVSMCs when
compared with that of the control miR-yVSMCs or miR-
yVSMCs transduced with control vector (Fig. 4a).

Consistent with the mRNA expression data, the Western
blot results also demonstrated that overexpressing
BMP7 in miR-yVSMCs decreased the protein expression
levels of the smooth muscle markers SM22a and calpo-
nin, and increased the protein expression levels of the
osteogenic markers OPN and Runx2 (Fig. 4b and c).

Alizarin red staining was performed to examine cal-
cium deposition. Calcium deposition was significantly
higher in miR-yVSMCs overexpressing BMP7 compared
with that of the control miR-yVSMCs or miR-yVSMCs
transduced with control vector (Fig. 4d and e). Together,
these results demonstrated that overexpressing BMP7 in
miR-yVSMCs reversed miR-542-3p’s suppression of the
osteogenic transition of yVSMCs, suggesting that miR-
542-3p regulated osteogenic transition of VSMCs via
targeting BMP7.

Discussion

In this study, by miRNA microarray, we identified 28
downregulated and 34 upregulated miRNAs in oVSMCs
compared with yVSMCs. Among these miRNAs, miR-
542-3p, whose expression level was 14 folds downregu-
lated in 0VSMCs, was selected for further study. Our re-
sults showed that miR-542-3p suppressed the osteogenic
differentiation of yVSMCs induced by p-GP. BMP7 was
found to be directly targeted by miR-542-3p, and
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Versus vector group, **p < 0.01

overexpressing BMP7 in miR-542-3p—expressing yVSMCs
could reverse miR-542-3p’s inhibition of osteogenic differ-
entiation. Our findings indicated that downregulation of
miR-542-3p promotes the osteogenic transition of VSMCs
in the aging rat via targeting BMP7.

Cardiovascular disease is a major cause of death world-
wide and the biological mechanisms of its development re-
main unclear. In recent years, the roles of miRNAs in
regulating cell functions have been proved in the cardiovas-
cular system, such as cardiomyocytes, endothelial cells, fi-
broblasts, and smooth muscle cells [33]. miRNAs are non-
coding RNAs that inhibit protein translation and/or anneal
to mRNAs and promote their cleavage. Accumulating re-
ports have proved the involvement of miRNAs in patho-
logical changes of the cardiovascular system [1, 12, 33].

Cardiovascular diseases are a prevailing issue in aging
patients. Vascular senescence has a close connection
with a broad spectrum of cardiovascular diseases, with
the characteristics of endothelial dysfunction and pheno-
typic transition of smooth muscle cells, resulting in in-
creased vascular stiffness and increased thickness of
vascular walls. It has been reported that the age-
associated phenotypic transition of VSMCs is a crucial
contributor to vascular remodeling [17, 25]. However,
the mechanism that drives phenotypic transition of

VSMCs with aging remains unclarified. In this study,
using RNAs extracted from the in vitro cultured VSMCs,
we explored the miRNA expression profile by micro-
array. Owing that rat aortas are composed of many kinds
of cells, including VSMCs, endothelial cells, and fibro-
blasts, to avoid the contamination of RNA from endo-
thelial cells and fibroblasts, we extracted the RNAs
extracted from the in vitro cultured VSMCs instead
from the aortas, which may be a drawback of our study.
By microarray, we investigated miRNA expressions in
yVSMCs and oVSMCs and identified 28 miRNAs down-
regulated in oVSMCs, including miR-196a-5p (~ 107-
fold), miR-196b-5p (~ 48-fold), miR-542-3p (~ 14-fold),
and miR-363-5p (~ 8-fold). miR-196a-5p and miR-196b-
5p were reported to be involved in regulating cancer
progression [26, 27, 36, 37]. Thus, miR-542-3p was
selected in the present study.

miR-542-3p was previously demonstrated to be in-
volved in osteoblast proliferation and differentiation
[14]; however, its function in vascular cells is unclear. In
our study, inhibited expression of osteogenic markers
and calcium deposition were observed in miR-542-3p-
overexpressing yVSMCs, while the expression of smooth
muscle markers was upregulated, indicating a pivotal
role of miR-542-3p in regulating osteogenic transition of
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VSMCs. Certain miRNAs have been reported to induce
switching of VSMCs to the synthetic phenotype, includ-
ing miR-let-7 g [32], miR-132 [5], miR-145 [19], miR-32
[20, 21], and miR-22 [36, 37]; some of which, for ex-
ample miR-145 and miR-32, were identified to regulate
osteogenic switching of VSMCs. However, miRNAs in-
volved in the age-associated phenotypic conversion of
VSMCs have not been completely identified. miR-542-
3p has been proved to suppress cancer cell growth [20,
21, 30]. Our previous work showed that the downregula-
tion of miR-542-3p promoted neointimal formation in
aging rats [28]. In the present study, we showed that
miR-542-3p regulates the osteogenic transition of
VSMCs, and with aging, downregulated miR-542-3p was
associated with the calcification of the vascular wall.
BMPs are a group of proteins originally discovered to
have the capability in inducing osteogenesis and chondro-
genesis. There are more than 20 members in BMP family,
and some family members, especially BMP2 and BMP?7,

have been shown to induce osteoblast differentiation and
bone formation in vivo and ex vivo [35]. BMP signaling
was also found to be associated with vascular diseases [4,
8] and vascular calcification [11, 38]. In our study, BMP7
was confirmed to be a target of miR-542-3p. Consistent
with our study, it was reported that miR-542-3p sup-
presses osteoblast cell proliferation and differentiation by
targeting BMP7 signaling [14]. The miRNAs miR-22 [22]
and miR-22-3p [34] were also demonstrated to target
BMP7. Additionally, using an online database miRDB
(http://mirdb.org), we predicted the potential targets of
rno-miR-542-3p, and identified 328 predicted targets for
miR-542-3p (Additional file 1: Table S3), which could fur-
ther help us to understand the role of miR-542-3p in
VSMCs.

Generally, in this study, overexpression of miR-542-3p
inhibited BMP7 expression in yVSMCs and osteogenic
differentiation of yVSMCs, which can be reversed by
overexpressing BMP7 in miR-542-3p—overexpressing
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v

BMP7 expression]

l

osteogenic differentiation of VSMCs

l

osteogenic transition in aging rat

Fig. 5 A proposed schematic diagram of miR-542-3p regulating the
osteogenic transition of VSMCs in aging rats. MiR-542-3p expression
is downregulated in 0VSMCs. As a target of MiR-542-3p, the expression of
BMP?7 is upregulated which results in the osteogenic differentiation of
VSMCs, suggesting the role of miR-542-3p in the vascular osteogenic
transition in aging rat

yVSMCs, suggesting that miR-542-3p regulates osteo-
genic transition of VSMCs via targeting BMP7. BMP7 is
extensively expressed in various tissues and is connected
to the development and pathological changes of bone,
renal, and ocular systems, as well as the central nervous
system [15]. Although BMP7 has been demonstrated to
play important role in osteogenesis [35], its role in the
osteogenic transition of VSMCs and vascular calcifica-
tion has not been well documented. Instead, some stud-
ies related BMP2 to vascular calcification by its role in
regulating osteoblast differentiation of VSMCs [6, 18,
39]. Thus, our study demonstrated novel signaling of
BMP?7, regulating the osteogenic transition of VSMCs
and vascular calcification.

Conclusions

We demonstrated that miR-542-3p was differentially
expressed in oVSMCs and yVSMCs and demonstrated
that miR-542-3p overexpression prohibited BMP7 ex-
pression and osteogenic differentiation in yVSMCs in-
duced by B-GP, which can be reversed by overexpressing
BMP7 in miR-542-3p—overexpressing yVSMCs. A pro-
posed schematic diagram of miR-542-3p regulating the
osteogenic transition of VSMCs in aging rats is shown in
Fig. 5. Together, our results suggested that miR-542-3p
regulates the osteogenic transition of VSMCs in aging
rats by targeting BMP7. These findings are helpful for a
better understanding of the role of miRNAs in regulating
the osteogenic transition of VSMCs in aging.
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