Skip to main content
Saleem Alsaleem

    Saleem Alsaleem

    Limited knowledge on the water–energy–carbon nexus of water supply systems (WSSs) with brackish groundwater sources in arid regions exists to date. In addition, the large amount of fossil-fuel energy utilized by treatment processes... more
    Limited knowledge on the water–energy–carbon nexus of water supply systems (WSSs) with brackish groundwater sources in arid regions exists to date. In addition, the large amount of fossil-fuel energy utilized by treatment processes generating a significant amount of carbon emissions remains a challenge for the municipalities in Saudi Arabia to meet long-term sustainability goals. To achieve Saudi Arabia Vision 2030’s target of sustainable cities with reduced CO2 emissions, the present study aimed to analyse the water–energy–carbon nexus for WSSs and propose mitigation measures for reducing energy and carbon footprints from both the water management and treatment technologies perspectives. The detailed energy consumption data for three main components (source extraction, water treatment, and conveyance and distribution) of the main WSS, serving the 600,000 population of Buraydah City (Qassim, Saudi Arabia), was obtained from the concerned municipality. The city water treatment plant ...
    Management of backwash water (BW) generated from sand filtration of groundwater naturally contaminated with iron (Fe), manganese (Mn), and radium (Ra) remains a challenge worldwide. The present study investigated the effectiveness of a... more
    Management of backwash water (BW) generated from sand filtration of groundwater naturally contaminated with iron (Fe), manganese (Mn), and radium (Ra) remains a challenge worldwide. The present study investigated the effectiveness of a low-cost clay ceramic filter for BW recycling along with residual sludge utilization for Ra removal from BW. A 15 day continuous ceramic filtration process operated at a constant flux of 2000 L/m2/d (83 LMH) showed 99% removal of Fe, Mn, and turbidity. The treated BW was found suitable for recycling back to the sand filters. Subsequently, the residual sand filter backwash sludge (BS) was collected, characterized by scanning electron microscopy (SEM) and X-ray diffraction, and examined as a potential adsorbent to the Ra. Results showed that the sludge constituted heterogeneous basic elements, with higher percentages of iron and manganese oxides. The sludge can be classified as typical mesoporous and poorly crystalline minerals consisting primarily of q...
    Algae-based membrane bioreactor (AMBR) has shown a potential for simultaneous wastewater treatment and production of algal biomass. However, the effectiveness of AMBR has yet to be further explored for greywater treatment. The present... more
    Algae-based membrane bioreactor (AMBR) has shown a potential for simultaneous wastewater treatment and production of algal biomass. However, the effectiveness of AMBR has yet to be further explored for greywater treatment. The present study assessed the algal biomass production, greywater treatment efficiency, and fouling characteristics of a laboratory-scale AMBR. The 12 h dark/12 h light cycle continuous experiments were performed with an AMBR operating at 48 h hydraulic retention time. The average algal biomass and chlorophyll-a production rates were 47.9 mg/L/d and 49.9 μg/L/d, respectively. The distribution of different pigments in the biomass showed an abundance of chlorophyll-a (92.2%) in the reactor. AMBR achieved 96% biological oxygen demand (BOD5) removal and 99% anionic surfactants removal by bacterial oxidation without any external aeration source. Algal assimilation achieved a total nitrogen removal of 52% and total phosphorus removal of 36%. More than 85% of nitrite (NO3-N) in the effluent revealed the absence of nitrification and denitrification processes in the reactor. Further, the reactor accomplished a higher than the 3.5-log reduction of total coliform and E-coli. The greenish cake layer of algal–bacterial biomass primarily caused the membrane fouling and accounted for 80–93% of total fouling resistance. Membrane fouling frequency decreased with the operation time, and physical cleaning effectively recovered the flux. The energy efficiency of AMBR in terms of net energy return (1.04) supported its application for the treatment and recycling of greywater. The present study provides the basis for establishing the guidelines for AMBR design for the treatment of greywater.
    Water utilities in arid regions deal with multifaceted issues of natural groundwater contamination, high treatment costs, and low water rates. These utilities rely on intermittent supplies resulting in numerous water quality failures at... more
    Water utilities in arid regions deal with multifaceted issues of natural groundwater contamination, high treatment costs, and low water rates. These utilities rely on intermittent supplies resulting in numerous water quality failures at source, treatment, distribution, and in-house plumbing systems. The present research presents an inclusive risk assessment methodology for managing water quality from source to tap. Three-year monitoring data for turbidity, TDS, pH, iron, ammonia, nitrates, residual chlorine, Coliform group, E. coli, and Fecal Streptococci identified the root causes of failures. The cause-effect relationships in the form of a fault tree were solved using multiple failure modes and effect analysis (FMEA) to handle both the Boolean operations. The fuzzy sets addressed the uncertainties associated with data limitations in calculating exceedance probabilities (Pe) and vagueness in expert opinion for subjective evaluation of severity and detectability. The methodology was applied on a smaller system serving 18,000 consumers in Qassim, Saudi Arabia. Potable supplied water underwent reoccurrence of TDS (Pe = 20%), turbidity (Pe = 10%), and Fe (Pe = 2%) failures in distribution that further increased up to 44%, 33%, and 11% at the consumer end. The Pe for residual chlorine failure soared up to 89%. Economic controls reduced the cumulative risk to 50%, while the shift to continuous supply can limit the remaining failures under the acceptable risk. The framework will help utilities manage water quality in intermittent systems from source to tap in Saudi Arabia, the Gulf, and elsewhere.
    Sustainable reuse of urban stormwater is inevitable in the fight against water crises in arid regions. This research aimed to evaluate the effectiveness of a low-cost ceramic filtration process for reuse applications of urban stormwater.... more
    Sustainable reuse of urban stormwater is inevitable in the fight against water crises in arid regions. This research aimed to evaluate the effectiveness of a low-cost ceramic filtration process for reuse applications of urban stormwater. Stormwater was collected from a storage pond located in Buraydah (Qassim, Saudi Arabia) for laboratory experiments. The filtration tests were performed in a continuous mode with constant pressure using a low-cost ceramic filter made of clay soil and rice bran. The removal rates of the contaminants (heavy metals) as well as the turbidity, suspended solids, and nutrients of the stormwater were assessed. High removal efficiencies for turbidity (97.4%), suspended solids (97.0%), BOD5 (78.4%), and COD (76.1%) were achieved while low removals were achieved for the nutrients: 19.7% for total nitrogen, 25.3% for nitrate, and 8.6% for phosphate. Removal efficiencies ranged between 36.2% and 99.9% for the heavy metals, i.e., iron, manganese, lead, zinc, nicke...
    A considerable amount of ablution greywater (AGW) is being produced at mosques for cleaning certain parts of the body before performing prayers. In this study, alum coagulation followed by batch and continuous AC adsorption tests was... more
    A considerable amount of ablution greywater (AGW) is being produced at mosques for cleaning certain parts of the body before performing prayers. In this study, alum coagulation followed by batch and continuous AC adsorption tests was conducted to examine the removal efficiency of turbidity, COD, and BOD to evaluate the recycling potential of AGW. In coagulation experiments, optimal overall removals of turbidity (95.8%), COD (31.6%) and BOD (50.0%) were achieved at 20 mg/L of alum dose. Further, the overall removal efficiencies were enhanced by AC adsorption for COD up to 70.8% and BOD up to 57.2% at 20 min adsorption equilibrium time with 0.2 g/L of optimal AC dose. The adsorption data was well fitted to the pseudo-second-order kinetics model. Both the Langmuir and Freundlich isotherm models were found suitable to characterize the adsorption of COD and BOD on AC. Maximum adsorption capacities were calculated 175 mg/g for COD and 88 mg/g for BOD. Continuous experiments of the AGW treatment process resulted in residual turbidity less than 1 NTU and both the COD and BOD values less than 10 mg/L. Treated AGW was found suitable for unrestricted irrigation, toilet flushing, and firefighting. The estimated cost for a full-scale treatment process (1.02 US$/$$\hbox {m}^{3})$$m3) came out to be less than the existing cost of water production (1.09 US$/$$\hbox {m}^{3})$$m3) in Saudi Arabia. The study revealed that the combination of alum coagulation and AC adsorption is a sustainable treatment option for recycling of AGW in arid and semiarid regions.
    The aim of this study is to examine the application of a low cost ceramic filter for the treatment of sand filter backwash water (SFBW). The treatment process is comprised of pre-coagulation of SFBW with aluminum sulfate (Alum) followed... more
    The aim of this study is to examine the application of a low cost ceramic filter for the treatment of sand filter backwash water (SFBW). The treatment process is comprised of pre-coagulation of SFBW with aluminum sulfate (Alum) followed by continuous filtration usinga low cost ceramic filter at different trans-membrane pressures (TMPs). Jar test results showed that 20 mg/L of alum is the optimum dose for maximum removal of turbidity, Fe, and Mn from SFBW. The filter can be operated at a TMP between 0.6 and 3 kPa as well as a corresponding flux of 480–2000 L/m2/d without any flux declination. Significant removal, up to 99%, was observed forturbidity, iron (Fe), and manganese (Mn). The flux started to decline at 4.5 kPa TMP (corresponding flux 3280 L/m2/d), thus indicated fouling of the filter. The complete pore blocking model was found as the most appropriate model to explain the insight mechanism of flux decline. The optimum operating pressure and the permeate flux were found to be ...
    Most of the municipalities in the Gulf region are facing performance-related issues in their municipal solid waste management (MSWM) systems. They lack a deliberate inter-municipality benchmarking processes. Instead of identifying the... more
    Most of the municipalities in the Gulf region are facing performance-related issues in their municipal solid waste management (MSWM) systems. They lack a deliberate inter-municipality benchmarking processes. Instead of identifying the performance gaps for their key components (e.g., personnel productivity, operational reliability, etc.) and adopt proactive measures, the municipalities primarily rely on an efficient emergency response. A novel hierarchical modeling framework, based on deductive reasoning, is developed for the performance assessment of MSWM systems. Fuzzy rule-based modeling using Simulink-MATLAB was used for performance inferencing at different levels, i.e., component, sub-components, etc. The model is capable of handling the inherent uncertainties due to limited data and an imprecise knowledge base. The model’s outcomes can exclusively assist the managers working at different levels of organizational hierarchy for effective decision-making. Performance of the key co...
    Arab countries are primarily situated in arid environments and face serious water scarcity challenges due to growing populations, urbanization, and climate change impacts. Reusing greywater, if adequately treated at the point of... more
    Arab countries are primarily situated in arid environments and face serious water scarcity challenges due to growing populations, urbanization, and climate change impacts. Reusing greywater, if adequately treated at the point of generation, poses less human health risk as compared to blackwater reuse. Consumers have several reasons for being unwilling to reuse greywater, including potential health risk, religious and cultural concerns, and feeling uncomfortable. There are several possible reuse applications of treated greywater, such as watering plants, floor cleaning, landscaping, toilet flushing, etc. Therefore, it is important to assess consumer perceptions about greywater reuse before its implementation in any region. In this research, a framework based on greywater reuse indicators (GWRI) was developed to assess consumer perceptions before and after introducing low-cost treatment (LCT). Later the framework was implemented for Muscat, Oman. A questionnaire survey was carried out...
    Halogenated hydrocarbons are members of priority water contaminants because of their negative health and environmental impacts. In this study, the solubility of three halogenated hydrocarbons, namely, carbon tetrachloride, chloroform, and... more
    Halogenated hydrocarbons are members of priority water contaminants because of their negative health and environmental impacts. In this study, the solubility of three halogenated hydrocarbons, namely, carbon tetrachloride, chloroform, and bromoform was measured in 12 hydrophobic ionic liquids (ILs) for temperature ranging between 25 and 45 °C. We investigated the chemical structure and alkyl chain length effect of three different cations (piperidinium, pyrrolidinium, and ammonium-based) paired with bis(trifluoromethylsulfonyl)imide anion. It was found that carbon tetrachloride and bromoform are partially miscible in all tested ILs while chloroform exhibits full miscibility. For ammonium based ionic liquids, the solubility increases with the increase of the cation molecular weight and alkyl chain length. The results indicate that the solubility of the studied halogenated hydrocarbons in methyltrioctylammonium bis(trifluoromethylsulfonyl)imide, octyltriethylammonium bis(trifluoromethylsulfonyl)imide, and 1-...