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glmmTMB Balances Speed and Flexibility
Among Packages for Zero-inflated
Generalized Linear Mixed Modeling

by Mollie E. Brooks, Kasper Kristensen, Koen J. van Benthem, Arni Magnusson, Casper W. Berg,
Anders Nielsen, Hans |. Skaug, Martin Michler, Benjamin M. Bolker

Abstract Count data can be analyzed using generalized linear mixed models when observations
are correlated in ways that require random effects. However, count data are often zero-inflated,
containing more zeros than would be expected from the typical error distributions. We present a new
package, glmmTMB, and compare it to other R packages that fit zero-inflated mixed models. The
glmmTMB package fits many types of GLMMs and extensions, including models with continuously
distributed responses, but here we focus on count responses. glmmTMB is faster than glmmADMB,
MCMCglmm, and brms, and more flexible than INLA and mgcv for zero-inflated modeling. One
unique feature of glmmTMB (among packages that fit zero-inflated mixed models) is its ability to
estimate the Conway-Maxwell-Poisson distribution parameterized by the mean. Overall, its most
appealing features for new users may be the combination of speed, flexibility, and its interface’s
similarity to Ime4.

Introduction

Observed response variables are often in the form of discrete count data, e.g., the number of times that
owl nestlings beg for food (Roulin and Bersier, 2007), counts of salamanders in streams (Price et al.,
2016), or counts of parasite eggs in fecal samples of sheep (Denwood et al., 2008). These counts are
often analyzed using generalized linear models (GLMs) and their extensions (O’Hara and Kotze, 2010;
Wilson and Grenfell, 1997). GLMs quantify how expected counts change as a function of predictor
variables, e.g., nestlings change their behavior depending on which parent they interact with (Roulin
and Bersier, 2007), salamander abundance decreases in streams affected by coal mining (Price et al.,
2016), and helminth infection intensity in sheep decreases in response to treatment with anthelmintic
drugs (Wang et al., 2017). Repeated measurements on the same individual, at the same location, or
observations during the same time period are often correlated; this correlation can be accounted for
using random effects in generalized linear mixed models (GLMMs; Bolker et al., 2009; Bolker, 2015).

These types of count data are commonly modeled with GLMs and GLMMs using either Poisson
or negative binomial distributions. For the Poisson distribution, the variance is equal to the mean.
When data are overdispersed — meaning the variance is larger than the mean — they are often instead
modeled using the negative binomial distribution, which can be defined as a mixture of Poisson
distributions with Gamma-distributed rates. Overdispersion can also be addressed by adding a
random effect with one level for each observation, i.e., a log-normal Poisson distribution (Elston et al.,
2001; Hadfield, 2010; Harrison, 2014, 2015). Ignoring overdispersion causes confidence intervals to
be too narrow and inflates the rate of false positives in statistical tests (Rhodes, 2015). When data
are either over- or underdispersed, they can be modeled with the lesser-known, Conway-Maxwell-
Poisson distribution (Shmueli et al., 2005; Lynch et al., 2014; Barriga and Louzada, 2014). Depending
on the dispersion, the upper tail of the Conway-Maxwell-Poisson distribution can be either longer
or shorter than that of the Poisson (Sellers and Shmueli, 2010). With two parameters, the Conway-
Maxwell-Poisson is a generalization of the Poisson distribution and, depending on the dispersion
parameter, it also includes the Bernoulli and geometric distributions as special cases (Sellers and
Shmueli, 2010). Among other generalizations, the Sichel and Delaporte distributions (Stasinopoulos
et al., 2017) provide flexibility in skewness in addition to dispersion.

For these distributions, the expected number of zeros decreases as the mean increases. However,
when multiple processes underlie the observed counts, the counts can contain many zeros even if the
mean is much greater than zero. For example, an observation of a stream with zero salamanders could
be a “structural” zero due to the stream being uninhabitable due to mining waste, or a “sampling’
zero due to the combination of a low mean (due to poor ecological suitability and/or low detectability)
and sampling variation (Price et al., 2016). Zero-inflated (more broadly zero-altered) GLMs allow us
to model count data using a mixture of a Poisson, negative binomial, or Conway-Maxwell-Poisson
distribution and a structural zero component. Models that ignore zero-inflation, or attempt to handle
it in the same way as simple overdispersion, can yield biased parameter estimates (Harrison, 2014).

’

In this article, we outline the R packages available for fitting models to count data while introducing
glmmTMB. We assume that the reader already has a basic understanding of GLMs (Buckley, 2015),
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GLMMs (Bolker, 2015), and zero-altered models (Zeileis et al., 2008; Harrison, 2014)).

Several R packages are available for fitting zero-inflated models: pscl, INLA, MCMCglmm,
glmmADMB, mgcv, brms, and gamlss (Table 1; Zeileis et al., 2008; Rue et al., 2009; Hadfield, 2010;
Skaug et al., 2012; Wood et al., 2016; Biirkner, 2017; Stasinopoulos et al., 2017). The widely-used pscl
package can fit zero-inflated and hurdle GLMs with predictor variables on the zero-inflation using
maximum likelihood estimation (MLE: Zeileis et al., 2008). For example, pscl can be used to test
the hypothesis that sheep fecal egg counts depend on age and structural zeros depend on genotype.
However, pscl cannot model the correlation within sampling units caused by repeated samples; this
requires random effects. Omitting random effects and thereby ignoring correlation makes statistical
inference anti-conservative (Bolker et al., 2009; Bolker, 2015). Several other packages have similar
capabilities for fitting zero-inflated GLMs (flexmix, MXM, VGAM: Griin and Leisch, 2008; Lagani
etal., 2017; Yee, 2017), but in this paper we focus on packages that can also estimate random effects.
One such package is glimmADMB which can fit zero-inflated GLMMs (Skaug et al., 2012). However,
glmmADMB cannot fit models where the degree of zero-inflation varies across observational units;
thus, it is only appropriate for models where all observational units have an equal probability of
producing a structural zero. INLA has the same limitation as glmmADMB (Rue et al., 2009). The
mgcv package can only fit zero-inflated GLMMSs with predictors of zero-inflation when using a Poisson
distribution (Wood et al., 2016). The MCMCglmm and brms packages can fit zero-inflated GLMMs
with predictors of zero-inflation, but they are relatively slow (as we will show) because they rely on
Markov chain Monte Carlo (MCMC) sampling (Biirkner, 2017; Hadfield, 2010). gamlss is a flexible
package that fits generalized additive models with predictors on all parameters of a distribution; its
scope includes several zero-inflated and zero-altered distributions (Stasinopoulos et al., 2017).

The list of features documented here is not exhaustive. It should be appreciated that brms, gamlss
and MCMCglmm have additional features that go beyond the scope of zero-inflated GLMMs (Biirkner,
2017; Stasinopoulos et al., 2017; Hadfield, 2010). We focus on the process of fitting models, largely
neglecting questions of statistical frameworks (frequentist vs. Bayesian) or post-fitting procedures
such as inference and prediction. For example, having MCMC samples from a fitted model allows a
wide range of inferential and predictive procedures.

Here we introduce a new R package, glmmTMB, that estimates GLMs, GLMMs and extensions
of GLMMs including zero-inflated and hurdle GLMMs using ML. The ability to fit these types of
models quickly and using a single package will make it easier to perform model selection. We focus
on zero-inflated counts, but note that there are many other distributions available in glmmTMB,
including continuous distributions. We demonstrate the package using two examples without going
into details of the reasons why a user would want to fit these models. We use an example of salamander
abundance to show how to fit and compare zero-inflated and hurdle GLMMs and then how to extract
results from a model. We then use variations of the salamander data to compare how the timings of
different packages scale with the number of observations and random effect levels. We use a classic
example of owl nestling behavior to compare the timing and parameter estimates from glmmTMB
with other R packages.

Implementation of glmmTMB

The design goal of glmmTMB is to extend the flexibility of GLMMs in R while maintaining a familiar
interface. To maximize flexibility and speed, glmmTMB’s estimation is done using the TMB package
(Kristensen et al., 2016), but users need not be familiar with TMB. We based glmmTMB’s interface
(e.g., formula syntax) on the Ime4 package — one of the most widely used R packages for fitting
GLMMs (Bates et al., 2015). Like lme4, glmmTMB uses MLE and the Laplace approximation to
integrate over random effects; unlike Ime4, glmmTMB does not have the alternative options of doing
restricted maximum likelihood (REML) estimation nor using Gauss-Hermite quadrature to integrate
over random effects (Bolker et al., 2009; Bolker, 2015). The Laplace approximation may perform poorly
when there is little information available on each random effect level (Ogden, 2015). REML may be
added to glmmTMB in the future. The underlying implementation using TMB is a fundamental
difference compared to Ime4 and provides glmmTMB with a speed advantage when estimating
non-Gaussian models (Figures 1 and 2) and gives it greater flexibility in the classes of distributions it
can fit (Table 1).

The flexibility of glmmTMB enables users to fit and compare many varieties of models with
assurance that the log-likelihood values are calculated in a consistent way. Comparing likelihoods of
models fit by multiple packages must be done carefully because some packages drop constants from
the log-likelihood calculations while others do not.

A glmmTMB model has four main components: a conditional model formula, a distribution for
the conditional model, a dispersion model formula, and a zero-inflation model formula. Simple GLMs
and GLMMs can be fit using the conditional model while leaving the zero-inflation and dispersion
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Feature glmmTMB glmmADMB MCMCglmm brms INLA mgcv gamlss
hurdle models! v v v v v
predictors of zero-inflation v v v v
predictors of dispersion v v v
zero-truncated distributions v v v v v v
nbinom2 distribution v v v v v? v
nbinom1 distribution v v v?
compois distribution V3

Delaporte distribution v?
Sichel distribution v
geometric distribution v v v?
PIG distribution v
weights vt v v v v v
offsets v v 5 v v v

various RE structures v v v v v

RE cor across components ” v v

MLE v v v v
MCMC samples® v v v v vio v
multivariate responses 11 v v

GAM 12 v v v

Table 1: Features of packages that are used for modeling zero-inflated count data. This table only
contains packages that can at least fit zero-inflated Poisson GLMMs. lme4 is omitted because it
can only estimate zero-inflation when wrapped in an expectation maximization algorithm (Bolker
et al.,, 2013). nbinom2 and nbinom1 are negative binomial distributions in which the variance increases
quadratically and linearly (respectively) with the mean. compois is the Conway-Maxwell-Poisson

distribution. PIG is the Poisson inverse Gaussian distribution. Notes: 1 We restrict this to mean a single function
call, rather than two separate models. 2 Not available with zero-inflation. 3 Conway-Maxwell-Poisson distribution parameterized
by the mean. 4 Weights are often used to reduce the influence of some observations over others, e.g., Gurevitch and Hedges, 1999;
additionally, glmmTMB’s dispersion formula can be used to model heteroskedasticity. 5 Offsets can be implemented using priors. 6
See vignette("covstruct”) for details. 7 Some packages allow for correlation across random effects from different components of
the model (e.g., conditional and zero-inflation). 8 Here, we mean that MCMC samples can be obtained from an estimated model
(i.e., joint samples from the full distribution, conditional on the data) whether it is estimated using MCMC sampling or MLE. In
the case of MLE, flat priors are used for MCMC sampling and chains are initiated at the ML estimate. 9 See vignette("mcmc") for
details. 10 This feature is available and widely used e.g., Chevin et al., 2015, but apparently unsupported by any formal evaluation.
11 We exclude the possibility that the correlation structure of random effects makes a model mathematically equivalent to a
multivariate response. 12 Here, we mean generalized additive modeling with automatic smoothness selection. However, a spline
can be included in any of these methods using the bs or ns functions from the splines package.

formulas at their default values. The mean of the conditional model is specified using a two-sided
formula with the response variable on the left and predictors on the right, potentially including
random effects and offsets. This formula uses the same syntax as Ime4. For example, if salamander
counts vary by species (spp) and vary randomly by site, then the formula for the dependence of mean
count on species could be

count ~ spp + (1 | site)

The distribution around the mean of the conditional model is specified using the argument family.
For the types of count data described in the introduction, the distribution will typically be either
Poisson or negative binomial. The Conway-Maxwell-Poisson is a less commonly known distribution
for count data that is flexible enough to fit both over- and underdispersed data. Following the standard
of glmmTMB described above, the Conway-Maxwell-Poisson distribution (family = compois) is
parameterized with the mean (Huang, 2017), which differs from the COMPoissonReg package(Sellers
et al., 2017). The Poisson, Conway-Maxwell-Poisson, and negative binomial distributions use a
log link by default, but other links can be specified as in family = poisson(link = "identity").
glmmTMB provides two parameterizations of the negative binomial which differ in the dependence
of the variance (¢2) on the mean (). For family = nbinoml, the variance increases linearly with the
mean as 0% = (1 + ), with a > 0; for family = nbinom2, the variance increases quadratically with
the mean as 0% = p(1 + p/0), with 8 > 0 (Hardin and Hilbe, 2007). For the Conway-Maxwell-Poisson
distribution, there is no closed form equation for the variance (Huang, 2017).

With the default dispersion model (dispformula = ~ 1), the dispersion parameter (e.g., « or 6
for the negative binomial distribution) is identical for each observation. Alternatively, the dispersion
parameter can vary with fixed effects; in this case, the dispersion model uses a log link. The dispersion
model can be used to account for heteroskedasticity. For example, if the response is more variable
(relative to the mean) as the year progresses, then a model with either negative binomial distribution
might use the one-sided formula dispformula = ~ DOY where DOY is the day of the year. When the
same variables are in the conditional and dispersion models, the mean-variance relationship can be
manipulated, but this could potentially lead to non-convergence issues. A description of the dispersion
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parameter for each distribution can be accessed by typing ?sigma.glmmTMB in R.

The zero-inflation model describes the probability of observing an extra (i.e., structural) zero that
is not generated by the conditional model. Zero-inflation creates an extra point mass of zeros in the
response distribution; the overall distribution is a mixture of the conditional model and zero-inflation
model (Lambert, 1992; Rhodes, 2015). The zero-inflation probability is bounded between zero and
one by using a logit link. For example, if salamanders emerged seasonally at each site, such that a
structural zero could occur either because a site was contaminated or because it was visited too early
in the season, then the model could include the one-sided formula ziformula = ~ DOY. The probability
of producing a structural zero can be modeled as equal for all observations with ziformula = ~ 1. In
glmmTMB, it is possible to include random effects in the conditional and zero-inflation models, but
not the dispersion model.

Installation of glmmTMB

The package is available from The Comprehensive R Archive Network (CRAN) via the command
install.packages("glmmTMB"). The current version is 0.2.0. Development versions are available from
GitHub and can be installed using devtools (Wickham and Chang, 2017). Current details for installing
development versions should be accessed on the GitHub page https://github.com/glmmTMB/glmmTMB.

Examples and benchmarks

To illustrate how to use glmmTMB and to compare it to other packages, we applied it to two data sets
that are distributed with glmmTMB. Additional code and graphs for these examples can be found in
Appendicies A and B.

ABUNDANCE OF SALAMANDERS IN STREAMS

Salamander data We demonstrate how to use features of glmmTMB to do model selection and output
model results using a data set of the abundance of salamanders (Figure 3). They were observed four
times at 23 sites in streams, some of which were impacted by coal mining; multiple species and life
stages of salamanders were observed. The data set contains covariates that may affect the habitat
suitability of a site and the ability of researchers to capture salamanders that inhabit the site (Price
et al., 2016, 2015). Price et al. analyzed the data using a Bayesian model with an ecological and a
sampling component; abundance was estimated with a hurdle Poisson model and then observations
were modeled as binomial samples from the abundance.

Model fitting and selection We fit GLMMs, zero-inflated GLMMs, and hurdle models to the sala-
mander data with Poisson, Conway-Maxwell-Poisson, and negative binomial distributions on the
conditional model. For simplicity, we neglected some possible covariates. As a null model, we assumed
that counts varied by species (spp) and randomly by site (site). We fit models where the mean count
additionally depended on mining status (mined). Our full zero-inflated GLMMs allowed both the
conditional and zero-inflation models to differ between mined and unmined sites. Full zero-inflated
and hurdle negative binomial GLMMs were fit using the following commands (respectively) :

zinb = glmmTMB(count~spp * mined + (1|site), zi=~spp * mined,
data=Salamanders, family=nbinom2)

hnb = glmmTMB(count~spp * mined + (1|site), zi=~spp * mined,
data=Salamanders, family=truncated_nbinom2)

As is generally the case for model formulas in R, the * indicates an interaction plus main effects. We
used Akaike information criteria (AIC) to compare all models via the AICtab function from the bbmle
package (Bolker and Team, 2017). For convenience, glmmTMB reports the log-likelihood of unconverged
models as NA and version 1.0.19 of bbmle puts these models at the bottom of AIC tables. The code for
fitting these models and doing model selection is presented in Appendix A.

Of the models we considered, the most parsimonious was a Conway-Maxwell-Poisson GLMM that
allowed counts to vary with species, mining, and their interaction. It did not include zero-inflation,
as is common in abundance models (Warton, 2005). Two zero-inflated negative binomial and one
zero-inflated Conway-Maxwell-Poisson model did not converge. Failed convergence is typically
caused by trying to estimate parameters for which the data do not contain information. Models that
do not converge should not be considered in model comparison. General model convergence issues
are discussed in vignette("troubleshooting”,package="glmmTMB").
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Model summary The summary of simple GLMMs from glmmTMB is modeled on the familiar
output format of Ime4. To demonstrate the extra output from zero-inflation and dispersion models,
we present the summary from a more complicated model.

glmmTMB(count ~ mined + (1|site), zi=~mined , disp=~DOY, Salamanders, family=nbinom2)

Following the arguments in the function call above, this model allows the conditional mean to
depend on whether or not a site was mined and to vary randomly by site. It allows the number of
structural (i.e., extra) zeros to depend on mining. Additionally, it allows the dispersion parameter to
depend on the day of the year. This model can be represented by the following set of equations

u = E(count|u,NSZ) = exp(Bo + Bminedno + 1), 1

U~ N(Qﬁ), )

0> = Var(count|u,NSZ) = u(1+ u/0), (3)
logit(p) = BE" + Blineanor @
log(0) = g™ + Booy™ - DO, )

where u is a site specific random effect, NSZ is the event “non-structural zero”, p = 1 — Pr(NSZ) is
the zero inflation probability, and ’s are regression coefficients with subscript denoting covariate /level
(with 0 denoting intercept).

summary (glmmTMB(count~mined+(1|site), zi=~mined , disp=~DOY, Salamanders, family=nbinom2))

#> Family: nbinom2 ( log )

#> Formula: count ~ mined + (1 | site)
#> Zero inflation: ~mined

#> Dispersion: ~DOY

#> Data: Salamanders

#>

#> AIC BIC loglLik deviance df.resid
#> 1735 1767 -861 1721 637
#>

#> Random effects:

#>

#> Conditional model:

#> Groups Name Variance Std.Dev.

#> site (Intercept) 0.134 0.366

#> Number of obs: 644, groups: site, 23

#>

#> Conditional model:

#> Estimate Std. Error z value Pr(>|z])

#> (Intercept) -0.540 0.376 -1.44 0.15

#> minedno 1.424 0.365 3.90 0.000098 **xx*

#> ---

#> Signif. codes: @ '*xx' 0.001 '*x' 0.01 'x' .05 '.' 0.1 ' ' 1
#>

#> Zero-inflation model:

#> Estimate Std. Error z value Pr(>|z])

#> (Intercept) 0.256 0.487  0.53 ©.5988

#> minedno -2.244 0.745 -3.01 0.0026 **

#> -—-

#> Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' .05 '.' 0.1 ' ' 1
#>

#> Dispersion model:

#> Estimate Std. Error z value Pr(>|z]|)

#> (Intercept) 0.0278 0.3177 0.09 0.93

#> DOY -0.3947 0.1537 -2.57 0.01 *

#> ---

#> Signif. codes: @ '**x' 0.001 'xx' 0.01 'x' .05 '.' @0.1 ' ' 1

This summary can be broken down into five sections. The top section is a general overview
containing a description of the model specification (Family, Formula, Zero inflation, Dispersion,
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Data) and resulting information criteria. The information criteria can only be compared to models
fitted by packages that, like, glmmTMB, compute the full form of the log-likelihood without dropping
constant terms. The second section describes the variability of the Random effects. In this model,
we only had random effects in the conditional model (equation 1), but random effects from the zero-
inflation model (equation 4) could also appear here. The estimated variance 0.134 is 02 in equation 2.
The third section describes the coefficients of the Conditional model (Bp and Bpinedno in equation 1)
including Wald Z statistics and p-values. Apart from the intercept, the estimates are all contrasts as is
standard in regression models. This model has a log link as stated in the top line of the summary. The
fourth section describes the Zero-inflation model similarly to the Conditional model except that
this model has a logit link. The zero-inflation model estimates the probability of an extra zero such that
a positive contrast indicates a higher chance of absence (e.g. minedno <@ means fewer absences in sites
unaffected by mining); this is the opposite of the conditional model where a positive contrast indicates
a higher abundance (e.g., minedno >0 means higher abundances in sites unaffected by mining). The
estimates in this section correspond to %Zl} and ﬁr(nzi;)edn o, in equation 4. The last section provides
estimated coefficients from the Dispersion model (equation 5), which uses a log link to keep the
dispersion parameter 6 positive. In contrast, a model with the default (simple) dispersion model
would report the single dispersion parameter on the natural (rather than log) scale. To interpret the
dispersion parameters of any distribution, see ?sigma.glmmTMB.

The current version of the summary function does not display uncertainty estimates for the random
effects nor for single dispersion parameters, but confidence intervals can be calculated using the
confint function. See ?confint.glmmTMB for details. All confidence intervals produced by the current
version of the confint function are Wald intervals, based on the standard errors calculated using the
delta method for the parameter on the scale of the internal parameterization (which varies by family).

Additional model output using the predict and simulate functions from glmmTMB is demonstrated
in appendix A (Figures 4, 5, 6, and 7).

Timing comparisons Because glmmTMB is the only package that can fit Conway-Maxwell-Poisson
GLMMs, it was not possible to do benchmarking with the most parsimonious model. Therefore, for
benchmarking, we used the second best model (A AIC=0.5) which substituted a negative binomial
response for the Conway-Maxwell-Poisson response. We measured the time required to fit this model
using multiple packages. We performed three sets of timing benchmarks: (1) on simulated data
with the same structure as the original salamander data, (2) on the original data replicated to create
more observations per random effect level and the same number of random effect levels, (3) on
simulated data with increasing numbers of random effect levels and the same number of observations
per random effect level. Benchmarks were run in parallel using parLapply on a high performance
computing cluster with 12 cores. This performance should match running on a single core. We used
default values for all packages except with glmmADMB which required an additional argument
(extra.args="-ndi 1000000") to allocate additional memory. By default, brms runs four MCMC
chains while MCMCglmm runs one, which greatly affects their estimation time. However, it would be
simple to speed up fitting of brms models by running the chains in parallel. For Bayesian methods, the
important aspect of timing is sampling efficiency (minimum effective samples per unit time, Biirkner,
2017), but this is not compatible with the MLE methods, so we limit our presentation of the timings of
the Bayesian methods.

Benchmarking showed that fitting the negative binomial model to simulated data with the same
structure as the original data was, on average, equally fast in glmmTMB and INLA, 14 times slower with
g1lmmADMB, 29 times slower with Ime4, and 190 times slower with brms. mgcv fit the model the fastest,
taking 0.03 times as long as glmmTMB. gamlss took 0.24 times as long as glmmTMB. With increasing
numbers of observations, the estimation times of all packages appeared to follow power law functions
(Figure 1). For simulated data sets with increasing numbers of random effect levels, estimation time
increased as a power-law function for all packages except INLA which had estimation times that
accelerated (Figure 2). The speed of glmmTMB for models with more random effect levels is due to the
sparseness handling by TMB. Benchmarking nuances such as memory usage and how timings scale
with model complexity could be investigated in more detail in future studies.

BEGGING BEHAVIOR OF OWL NESTLINGS

To further compare R packages for fitting zero-inflated GLMMs, we analyzed counts of begging
behavior by owl nestlings. The full analyses can be found in Appendix B. This example previously
appeared in Zuur et al. (2009) and Bolker et al. (2013) and was originally published by Roulin and
Bersier (2007). We compared the estimates of fixed effects and the amount of time required for fitting
the same model in INLA, MCMCglmm, glimmADMB, mgcv, and brms (Rue et al., 2009; Hadfield,
2010; Skaug et al., 2012; Wood et al., 2016; Biirkner, 2017). For brms and MCMCglmm, we used the
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Figure 1: The Salamander data set was replicated by 1, 2, 4, 6, 8, and 10 times to create larger data
sets. The time required to fit the same model using functions glmmadmb,glmmTMB,inla, glmer.nb, and
gam was recorded. That model can be represented as glmmTMB(count ~ spp * mined + (1 |
site), Salamanders, family="nbinom2"). All models had the same number of parameters including
random effect levels. Lines represent linear models fit on the log-log scale. With increasing numbers of
observations (1), estimation times increased as a power-law function (n*) with exponents (x) reported
next to model names.

default number of iterations, burn-in samples, and thinning. In each package, we fit zero-inflated
Poisson models with six fixed effects, one random effect; we also accounted for overdispersion,
although sometimes (of necessity) in slightly different ways with different packages (e.g., negative
binomial vs. log-normal-Poisson models). We allowed zero-inflation to vary with food treatment and
vary randomly with nest. See Appendix B for details of these methods, including code.

Estimates and confidence (or credible) intervals (CI) from brms, mgcv, MCMCglmm, and INLA were
nearly identical to those of glmmTMB, when running the Bayesian models with flat priors (Figures 8
and 9).

Conclusions

We have introduced an R package that can quickly estimate a variety of models including GLMs,
GLMMs, zero-inflated GLMMs, and hurdle models. By providing this flexibility in a single package,
we reduce the need for researchers to learn multiple packages. Another benefit is that models estimated
with a single package can be compared using likelihood-based methods including information criteria.
Using information criteria to select a model for the salamander data, we found that (among the
models we considered) zero-inflation did not improve the fit; we expect that this will be a common
result. While glmmTMB allows users to easily fit complicated models, a maximally complex model
might not be necessary and might not converge, as we saw here. Other packages have many of
the features implemented in glmmTMB, but none have the ability to fit Conway-Maxwell-Poisson
GLMMs. Overall, glmmTMB is a very flexible package for modeling count data with zero-inflated
GLMMs while still ranking highly in speed comparisons.
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Appendix A: Salamander example comparing GLMMs, zero-inflated GLMM:s,
and hurdle models using glimmTMB

In this appendix, we reanalyze counts of salamanders in streams. Repeated samples of salamanders
were taken at 23 sites. Some of the sites were affected by mountain top removal coal mining. The data
was originally published in (Price et al., 2016) and was acquired from Dryad (Price et al., 2015). These
analyses are intended to be a simple demonstration of how to use some features of the glmmTMB
package, so we do not attempt to fit all of the models that could be reasonable to try with the covariates
that were collected.
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Figure 3: Observed numbers of salamanders. Histograms show count data split into separate panels

for each salamander species or life stage. Each panel contains two overlaid histograms in which color
represents whether the site was affected by mining.

Poisson models

The syntax for fitting GLMMs with glmmTMB is quite similar to using glmer. In the first model, the
formula, count ~ spp + (1 | site), says that counts depend on species and vary randomly by
site. We also pass it the data frame, Salamanders, and specify a Poisson distribution using the family
argument. glmmTMB assumes that we want a log link with the Poisson distribution because that’s
the standard.

pm@ = glmmTMB(count~spp + (1|site), Salamanders, family=poisson)
pml = glmmTMB(count~spp + mined + (1|site), Salamanders, family=poisson)
pm2 = glmmTMB(count~spp * mined + (1|site), Salamanders, family=poisson)

Conway-Maxwell-Poisson models
To fit Conway-Maxwell-Poisson models, we use family=compois instead of poisson.

cmpm@ = glmmTMB(count~spp + (1|site), Salamanders, family=compois)
cmpm1 glmmTMB(count~spp + mined + (1|site), Salamanders, family=compois)
cmpm2 = glmmTMB(count~spp * mined + (1|site), Salamanders, family=compois)

Negative binomial models

nbm@ = glmmTMB(count~spp + (1|site), Salamanders, family=nbinom2)
nbm1 = glmmTMB(count~spp + mined + (1|site), Salamanders, family=nbinom2)
nbm2 = glmmTMB(count~spp * mined + (1|site), Salamanders, family=nbinom2)

Unlike the Poisson, the negative binomial distribution has a dispersion parameter. If we expected
the counts to become more dispersed (relative to the mean) as the year progresses, then we could
use the dispersion formula to model how the dispersion changes with the day of the year (DOY) using
disp= ~ DOY.

nbdm@ = glmmTMB(count~spp + (1|site), disp=~DOY, Salamanders, family=nbinom2)
nbdm1 = glmmTMB(count~spp + mined + (1|site), disp=~DOY, Salamanders, family=nbinom2)
nbdm2 = glmmTMB(count~spp * mined + (1|site), disp=~DOY, Salamanders, family=nbinom2)
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Zero-inflated models

To fit zero-inflated models, we use the ziformula argument, or glmmTMB will also recognize zi. This
is a formula that describes how the probability of an extra zero (i.e., structural zero) will vary with
predictors. In this example, we might assume that absences will at least vary by species (spp), so we
write zi= ~ spp. This formula only has a right side because the left side is always the probability
of having a structural zero in the response that was specified in the first formula. The zero-inflation
probability is always modeled with a logit link to keep it between 0 and 1.

Zero-inflation can be used with any of the distributions in glmmTMB, so we compare the same
conditional and zero-inflation models with Poisson, Conway-Maxwell-Poisson, and negative binomial
distributions.

Warning messages tell us that zicmpm3, zinbm@, and zinbm1 do not converge. The convergence
warning refers to vignette(”troubleshooting"); this vignette will expand as advice for troubleshoot-
ing convergence issues develops. It seems that zicmpm3 is overparameterized, but the problem with
zinbm@ and zinbm1 is that they only have mined in the conditional model and not the zero-inflation
model, so that they do not agree well with the data. Plotting the data and thinking carefully about the
models should help to avoid convergence issues.

zipm@ = glmmTMB(count~spp +(1|site), zi=~spp, Salamanders, family=poisson)

zipml = glmmTMB(count~spp + mined +(1|site), zi=~spp, Salamanders, family=poisson)

zipm2 = glmmTMB(count~spp + mined +(1|site), zi=~spp + mined, Salamanders, family=poisson)
zipm3 = glmmTMB(count~spp * mined +(1|site), zi=~spp * mined, Salamanders, family=poisson)
zicmpm@ = glmmTMB(count~spp +(1]|site), zi=~spp, Salamanders, family=compois)

zicmpml = glmmTMB(count~spp + mined +(1|site), zi=~spp, Salamanders, family=compois)

zicmpm2 = glmmTMB(count~spp + mined +(1|site), zi=~spp + mined, Salamanders, family=compois)
zicmpm3 = glmmTMB(count~spp * mined +(1|site), zi=~spp * mined, Salamanders, family=compois)

#> Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-
#> definite Hessian matrix. See vignette('troubleshooting')

zinbm@ = glmmTMB(count~spp +(1|site), zi=~spp, Salamanders, family=nbinom2)

#> Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-
#> definite Hessian matrix. See vignette('troubleshooting')

zinbml = glmmTMB(count~spp + mined +(1|site), zi=~spp, Salamanders, family=nbinom2)

#> Warning in fitTMB(TMBStruc): Model convergence problem; non-positive-
#> definite Hessian matrix. See vignette('troubleshooting')

zinbm2 = glmmTMB(count~spp + mined +(1]|site), zi=~spp + mined, Salamanders, family=nbinom2)
zinbm3 = glmmTMB(count~spp * mined +(1|site), zi=~spp * mined, Salamanders, family=nbinom2)

#> Warning in fitTMB(TMBStruc): Model convergence problem; singular
#> convergence (7). See vignette('troubleshooting')

Hurdle models

We can also fit hurdle models in a single model by using a truncated distribution for the conditional
model and adding zero-inflation.

hpm@ = glmmTMB(count~spp + (1|site), zi=~spp, Salamanders, family=truncated_poisson)

hpm1 = glmmTMB(count~spp + mined + (1|site), zi=~spp + mined, Salamanders,
family=truncated_poisson)

hpm2 = glmmTMB(count~spp * mined + (1|site), zi=~spp + mined, Salamanders,
family=truncated_poisson)

hnbm@ = glmmTMB(count~spp + (1|site), zi=~spp, Salamanders, family=truncated_nbinom2)

hnbm1 = glmmTMB(count~spp + mined + (1|site), zi=~spp + mined, Salamanders,
family=truncated_nbinom2)

hnbm2 = glmmTMB(count~spp * mined + (1|site), zi=~spp + mined, Salamanders,

family=truncated_nbinom2)
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Model comparison using AIC

We can use AICtab to compare all the GLMMs, including zero-inflated and hurdle models. Here,
to save space, we only output the AlCtable for the top four and bottom four models. The most
parsimonious model has a Conway-Maxwell-Poisson distribution with effects of species, mining, and
their interaction.

AICtab(pm@, pm1, pm2,
cmpm@, cmpml, cmpm2,
nbm@, nbm1, nbm2,
nbdm@, nbdml, nbdm2,
zipm@, zipml, zipm2, zipm3,
zicmpm@, zicmpml, zicmpm2, zicmpm3,
zinbm@, zinbm1, zinbm2, zinbm3,
hpm@, hpm1, hpm2,
hnbm@, hnbm1, hnbm2)

The top of the table

model df dAIC

cmpm?2 16 0.00
nbm?2 16 0.48
nbdm?2 17 1.99
zicmpm?2 18 2.09
zinbm3 30 6.80

and the bottom
model df dAIC
hpmO 15 314
pmO 8 330

zicmpm3 30 NA
zinbmO 16 NA
zinbm1 17 NA

The log-likelihood of the unconverged models is reported as NA so that these models appear at the end
of the AIC table. The negative log-likelihood could be extracted with zinbm1$fit$objective if it was
needed.

Plotting model results

There are many decisions to make about marginalizing over or conditioning on the random ef-
fects. See discussion at https://cran.r-project.org/web/packages/merTools/vignettes/Using_
predictInterval.html.

For demonstration purposes, we plot results from the top zero-inflated model zinbm3.

Quick and dirty plot

It’s easiest to see the pattern by using the predict function. To avoid marginalizing over or condition-
ing on random effects, we can refit the best model without the random effect of site; however, this is
not ideal because it ignores the correlation within sites. We present a more rigorous version next.

The predict function has a parameter zitype that specifies whether you want predictions from
the conditional model, the zero-inflation model, or the expected response that combines both parts of
the model.

zinbm3FE = glmmTMB(count~spp * mined, zi=~spp * mined, Salamanders, family=nbinom2)
newdata® = newdata = unique(Salamanders[,c("mined”,"spp")1)

temp = predict(zinbm3FE, newdata, se.fit=TRUE, zitype="response")

newdata$predFE = temp$fit

newdata$predFE.min = temp$fit-1.96*temp$se.fit

newdata$predFE.max = temp$fit+1.96xtemp$se.fit

real=ddply(Salamanders, ~site+spp+mined, summarize, m=mean(count))

ggplot(newdata, aes(spp, predFE, colour=mined))+geom_point()+
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geom_errorbar(aes(ymin=predFE.min, ymax=predFE.max))+
geom_point(data=real, aes(x=spp, y=m) )+

ylab("Average abundance \n including presences and absences”)+
xlab("Species")
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Figure 4: Estimated abundance ignoring correlation. Points represent site-specific average counts.
Error bars represent the 95% Wald-type confidence intervals for the predicted average count.

Alternative prediction method
We can predict at the population mode, by setting the random effects to zero.

X.cond = model.matrix(lme4: :nobars(formula(zinbm3)[-2]), newdata®)
beta.cond = fixef(zinbm3)$cond
pred.cond = X.cond %*% beta.cond

ziformula = zinbm3$modelInfo$allForm$ziformula #$
X.zi = model.matrix(1lme4: :nobars(ziformula), newdata®)
beta.zi = fixef(zinbm3)$zi

pred.zi = X.zi %*% beta.zi

These are estimates of the linear predictors (i.e., predictions on the link scale: logit(prob) and log(cond)),
not the predictions themselves. The easiest thing to do for the point estimates of the unconditional
count (ucount) is to transform to the response scale and multiply:

pred.ucount = exp(pred.cond)*(1-plogis(pred.zi))

For the standard errors/confidence intervals, we could use posterior predictive simulations (i.e., draw
multivariate normal samples from the parameter for the fixed effects). This conditions on/ignores
uncertainty in the random-effect parameters.

library(MASS)

set.seed(101)

pred.condpar.psim = mvrnorm(1000,mu=beta.cond, Sigma=vcov(zinbm3)$cond)
pred.cond.psim = X.cond %x% t(pred.condpar.psim)

pred.zipar.psim = mvrnorm(1000,mu=beta.zi,Sigma=vcov(zinbm3)$zi)
pred.zi.psim = X.zi %*% t(pred.zipar.psim)

pred.ucount.psim = exp(pred.cond.psim)*(1-plogis(pred.zi.psim))
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ci.ucount = t(apply(pred.ucount.psim,1,quantile,c(0.025,0.975)))
ci.ucount = data.frame(ci.ucount)

names(ci.ucount) = c("ucount.low”,"ucount.high")
pred.ucount = data.frame(newdata®@, pred.ucount, ci.ucount)

These predicted counts should be close to the median counts, so we plot them together to compare.

real.count = ddply(Salamanders, ~spp+mined, summarize, m=median(count), mu=mean(count))
ggplot(pred.ucount, aes(x=spp, y=pred.ucount, colour=mined))+geom_point(shape=1, size=2)+
geom_errorbar(aes(ymin=ucount.low, ymax=ucount.high))+
geom_point(data=real.count, aes(x=spp, y=m, colour=mined), shape=0, size=2)+
geom_point(data=real.count, aes(x=spp, y=mu, colour=mined), shape=5, size=2)+
ylab("”Abundance \n including presences and absences”)+
xlab("Species")
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Figure 5: Estimated abundance at mode. Circles represent predicted unconditional counts at the mode
(i.e., site effect = 0) and error bars represent the 95% confidence intervals for that mode. Squares
represent the observed median and diamonds represent observed means calculated across samples
and sites. In this highly skewed data, the mode is closer to the mean than the median.

Simulating from a fitted model

We could also examine the distribution of simulated values from the best fitted model. For this we use
the function simulate.glmmTMB. This function works for zero-inflated and hurdle models as well as
less complex models.

sims=simulate(nbm2, seed = 1, nsim = 1000)

This function returns a list of vectors. The list has one element for each simulation (nsim) and the
vectors are the same shape as our response variable.

simdatlist=lapply(sims, function(count){
cbind(count, Salamanders[,c('site', 'mined', 'spp')])
b))
simdatsums=lapply(simdatlist, function(x){
ddply(x, ~spp+mined, summarize,
absence=mean(count==0),
mu=mean (count))
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b

ssd=do.call(rbind, simdatsums)
Then we can plot them with the observations summarized in the same way.

real = ddply(Salamanders, ~spp+mined, summarize,
absence=mean(count==0),
mu=mean (count))
ggplot(ssd, aes(x=absence, color=mined))+
geom_density(adjust=4)+
facet_wrap(~spp)+
geom_point(data=real, aes(x=absence, y=1, color=mined), size=2)+
xlab("Probability that salamanders are not observed")+ylab(NULL)
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Figure 6: Simulated zero counts. Each panel represents a different species or life stage of a species.
Densities are values from 1000 data sets simulated from our best fit model. Points represent the
observed data.

We can see that this model does a good job of capturing the observed zero counts.

ggplot(ssd, aes(x=mu, color=mined))+
geom_density(adjust=4)+
facet_wrap(~spp)+
geom_point(data=real, aes(x=mu, y=.5, color=mined), size=2)+
xlab("Abundance including presences and absences”)+ylab(NULL)

Appendix B: Compare zero-inflated mixed models across R packages

In this appendix, we analyze counts of begging behavior by owl nestlings. This example previously
appeared in similar forms (Zuur et al., 2009) and (Bolker et al., 2013); the data were originally published
by (Roulin and Bersier, 2007). The response variable is the number of calls from chicks (NCalls) in a
nest. Two changes from the example published in (Bolker et al., 2013) are that (1) we use an observation-
level random effect to account for overdispersion; (2) instead of assuming that the number of calls
is strictly proportional to brood size (i.e., using an offset of log(brood size)), we fit the model with
log(brood size) as a predictor, equivalent to assuming that calls o (brood size)?, with y not necessarily
equal to 1.
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Figure 7: Simulated unconditional abundances. Each panel represents a different species or life stage
of a species. Densities are values from 1000 data sets simulated from our best fit model. Points
represent the observed data.

Since nests were repeatedly measured, Nest is included as a random effect; observation-level

random effects are incorporated to allow for overdispersion (Elston et al., 2001; Hadfield, 2010).

Covariates of interest include the sex of the parent visiting the nest (SexParent), whether the chicks
were satiated or not (FoodTreatment), and the timing of the parent’s arrival (ArrivalTime).

Preliminaries
Load packages

library(glmmTMB)

library(glmmADMB)

library(MCMCglmm)

library(brms)

library(INLA)

library(mgcv)

library(broom) #for tidy devtools::install_github("”bbolker/broom™)
library(plyr)

library(dplyr) #tidyverse
library(ggplot2); theme_set(theme_bw())
library(ggstance)#for position_dodgev

Data organization and helper functions (hidden)

data(Owls,package="glmmTMB")

Owls = plyr::rename(Owls, c(SiblingNegotiation="NCalls"))

Owls = transform(Owls,
ArrivalTime=scale(ArrivalTime, center=TRUE, scale=FALSE),
obs=factor(seq(nrow(0wls))))
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Constant zero-inflation

Here we fit the model with zero-inflation assumed to be constant across the data set, i.e., zero-inflation
is independent of the predictor variables.

glmmTMB

fixef1 = NCalls~(FoodTreatment + ArrivalTime) * SexParent + logBroodSize
forml = update(fixefl, . ~ . + (1|Nest)+(1|obs))
time.tmb = tfun(ml.tmb <<- glmmTMB(form1,
ziformula=~1, data = Owls,
family=poisson))

glmmADMB

With the additions to the model (logBroodSize as a covariate and observation-level random effects),
we were unsuccessful in fitting the model with glmmADMB. Some variants (e.g., with observation-
level random effects, but with logBroodSize as an offset) were possible by modifying control settings
(i.e. admb. opts=admbControl (shess=FALSE,noinit=FALSE)), but even when successful these fits were
very slow (>10 minutes).

MCMCglmm

Code for this example was modified from Bolker et al. (2013); a more complete description appears in
the supplementary material for that paper.

fixef2 = NCalls~trait-1+ # intercept terms for both count and binary terms
# other fixed-effect terms only apply to count term
at.level(trait,1):logBroodSize+
at.level(trait,1): ((FoodTreatment+ArrivalTime)*SexParent)

nfix = 8
# residual variances independent for count and binary terms;
# fixed to 1 for binary term

# random-effects variances independent for count and binary terms;
# fixed very small (1e-6) for binary term
prior_overdisp = list(R=list(V=diag(c(1,1)),nu=0.002,fix=2),
G=list(list(V=diag(c(1,1e-6)),nu=0.002,fix=2)))
prior_overdisp_broodoff = c(prior_overdisp,
list(B=list(mu=rep(@,nfix),
V=diag(rep(le4,nfix)))))
set.seed(101)
time .MCMCglmm = tfun(ml.MCMCglmm <<- MCMCglmm(fixef2,
rcov=~idh(trait):units,
random=~idh(trait) :Nest,
prior=prior_overdisp_broodoff,
data=Owls,
nitt=103000,
thin=100,
family="zipoisson”,
verbose=FALSE))

We adjusted the number of samples until the effective sample size of the most poorly sampled
parameter (the zero-inflation parameter, in this case) was greater than 500; with 100,000 samples
after a burn-in of 3,000, we achieved a minimum effective sample size of 568 (for the zero-inflation
parameter).

brms

time.brms = tfun(ml.brms <<- brm(form1, data = Owls,
iter=1000,
family="zero_inflated_poisson”))

#> Compiling the C++ model
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#> Start sampling

One of the known advantages of Hamiltonian Monte Carlo, as implemented in Stan (on which
brms is built), is that it achieves high effective sample size per MCMC step; we were able to cut down
the number of samples considerably from the default of 2000 and still achieve a minimum effective
sample size of approximately 500 (the minimum effective sample size achieved was 460).

We resample to estimate the time required for sampling only (i.e., not including model compilation
time.brms2 = tfun(ml.brms2 <<- update(ml.brms))

#> Start sampling

INLA
form2 = update(fixef1, . ~ . + f(Nest, model="iid") + f(obs, model="iid"))
time.inla = tfun(ml.inla <<-
inla(form2,
family= "zeroinflatedpoissonl1”,
data=0wls))
mgcv

To the best of our knowledge, mgcv: : gam is currently unable to fit models with the combination
of zero-inflation and overdispersion (the ziplss() famiy that handles zero-inflation handles only
a ZIP case rather than zero-inflated negative binomial or other extensions, and observation-level
random effects cannot be fit with gam’s random-effect approach). To address this issue, we fitted a
GAM with zero-inflated Poisson responses and used a quasi-likelihood approach: i.e., estimating
overdispersion as [sum of squared Pearson residuals/residual degrees of freedom] and inflating the
parameter standard errors by the square root of the overdispersion.

form3 = update(fixef1, . ~ . + s(Nest, bs="re"))
time.mgcv = tfun(ml.gam <<- gam(list(form3, ~ 1),
data = Owls,

family = ziplss(), method = "REML"))

Comparing the results

Timings:

time (sec)
mgcv 0.2
glmmTMB 2.5
INLA 4.2
MCMCglmm 53.0
brms (no compilation) 55.2
brms (with compilation) 115.6

The deterministic methods (gam, glmmTMB and inla) were all fast; gam was fastest, because we fitted
a simpler model (see above). The stochastic methods (MCMCglmm and brm) were about an order of
magnitude slower.

Because we ran brms with flat priors, the estimates are very close to the ML estimates of glmmTMB.
The most different results are from gam, because we used a quasi-likelihood model with a slightly
different implicit variance scaling.

Complex zero-inflation

Here we fit the model with zero-inflation depending on some of the predictor variables. We can
no longer use glmmADMB or INLA (INLA allows the zero-inflation probabilities to depend on
covariates in hurdle models — “type 0” in the INLA documentation — but not for zero-inflated
models).
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Figure 8: Estimated fixed-effect coefficients: Estimates are from similar zero-inflated Poisson models
fit using functions glmmTMB, MCMCglmm, brm, inla, and gam

glmmTMB

form@ = update(fixefl, . ~ . + (1|Nest))
ziform = ~FoodTreatment+(1|Nest)
time.tmb_czi = tfun(ml.tmb_czi <<- glmmTMB(formo,
ziformula=ziform,
data = Owls, family=nbinom2))

Attempting to fit the glmmTMB model with a log Normal-Poisson model (i.e., a Poisson model
with observation-level random effects) and covariate-dependent zero-inflation led to convergence
failure, so we substituted a similar model (a negative-binomial model without observation-level
random effects).

MCMCglmm

fixef3 = NCalls~trait-1+ # intercept terms for both count and binary terms
# fixed-effect terms for count term
at.level(trait,1):logBroodSize+
at.level(trait,1): ((FoodTreatment+ArrivalTime)*SexParent)+
# fixed-effect terms for binary term
at.level(trait,2):FoodTreatment

nfix = 9
# residual variances independent for count and binary terms;
# fixed to 1 for binary term

# random-effects variances now allow estimated variance for binary term
# as well
prior_overdisp_czi = list(R=list(V=diag(c(1,1)),nu=0.002,fix=2),
G=list(list(V=diag(c(1,1)),nu=0.002)))
prior_overdisp_broodoff_czi = c(prior_overdisp_czi,
list(B=1list(mu=rep(@,nfix),
V=diag(rep(le4,nfix)))))
set.seed(101)
time.mcmc_czi=tfun(ml.mcmc_czi <<- MCMCglmm(fixef3,
rcov=~idh(trait):units,
random=~idh(trait) :Nest,
prior=prior_overdisp_broodoff_czi,
data=Owls,
nitt=153000,
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family="zipoisson”,
verbose=FALSE))
## warning message suppressed ...

Minimum effective sample size: 884

brms

time.brms_czi = tfun(ml.brms_czi <<- brm(brmsformula(forml, zi=ziform),
data = Owls,
family="zero_inflated_poisson™))

#> Compiling the C++ model
#> Start sampling
time.brms_czi2 = tfun(ml.brms_czi2 <<- update(ml.brms_czi))

#> Start sampling

mgcv

time.mgcv_czi = tfun(ml.gam_czi <<- gam(list(form3,
~FoodTreatment+ s(Nest, bs = "re")),
data = Owls, family = ziplss(), method = "REML"))

Comparison
Timings:
time (sec)
mgcv 0.3
TMB 3.9
brms (no compilation) 53.1
MCMCglmm 88.5
brms (with compilation) 174.4
. A
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O
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Figure 9: Estimated fixed-effect coefficients: Estimates are from the same zero-inflated Poisson model
with predictors on zero-inflation fit using functions glmmTMB, MCMCg1mm, brm, and gam.

Package versions:
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#> brms glmmADMB glmmTMB INLA MCMCglmm mgcv
#>  1.10.2 0.8.5 0.2.0 17.6.20 2.25 1.8.20
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