Skip to main content
Intended for healthcare professionals
Restricted access
Research article
First published online January 1, 2018

Dose‐Optimal Vaccine Allocation over Multiple Populations

Abstract

Vaccination is an effective way to prevent an epidemic. It results in immunity for the vaccinated individuals, but it also reduces the infection pressure for unvaccinated people. Thus people may actually escape infection without being vaccinated: the so‐called “herd effect.” We analytically study the relation between the herd effect and the vaccination fraction for the seminal SIR compartmental model, which consists of a set of differential equations describing the time course of an epidemic. We prove that the herd effect is in general convex‐concave in the vaccination fraction and give precise conditions on the epidemic for the convex part to arise. We derive the significant consequences of these structural insights for allocating a limited vaccine stockpile to multiple non‐interacting populations. We identify for each population a unique vaccination fraction that is most efficient per dose of vaccine: our dose‐optimal coverage. We characterize the solution of the vaccine allocation problem and we show the crucial importance of the dose‐optimal coverage. A single dose of vaccine may be a drop in the ocean, but multiple doses together can save a population. To benefit from this, policy makers should select a subset of populations to which the vaccines are allocated. Focusing on a limited number of populations can make a significant difference, whereas allocating equally to all populations would be substantially less effective.

Get full access to this article

View all access and purchase options for this article.

References

Adida E., Dey D., Mamani H. 2013. Operational issues and network effects in vaccine markets. Eur. J. Oper. Res. 231(2); 414–427.
Ağrali S., Geunes J. 2009. Solving knapsack problems with S‐curve return functions. Eur. J. Oper. Res. 193(2): 605–615.
Arino J., Van den Driessche P. 2003. A multi‐city epidemic model. Math. Popul. Stud. 10(3): 175–193.
Arino J., Brauer F., Van Den Driessche P., Watmough J., Wu J. 2006. Simple models for containment of a pandemic. J. R. Soc. Interface 3(8): 453–457.
Ball F. G., Lyne O. D. 2002. Optimal vaccination policies for stochastic epidemics among a population of households. Math. Biosci. 177 & 178: 333–354.
Becker N. G., Starczak D. N. 1997. Optimal vaccination strategies for a community of households. Math. Biosci. 139(2): 117–132.
Berkman B. E. 2009. Incorporating explicit ethical reasoning into pandemic influenza policies. J. Contemp. Health Law Policy 26(1): 1.
Boulier B. L., Datta T. S., Goldfarb R. S. 2007. Vaccination externalities. B.E. J. Econ. Anal. Policy 7(1). https://doi.org/10.2202/1935-1682.1487.
Bowman C. S., Arino J., Moghadas S. M. 2011. Evaluation of vaccination strategies during pandemic outbreaks. Math. Biosci. Eng. 8(1): 113–122.
Brandeau M. L., Zaric G. S., Richter A. 2003. Resource allocation for control of infectious diseases in multiple independent populations: beyond cost‐effectiveness analysis. J. Health Econ. 22(4): 575–598.
Cairns A. J. G. 1989. Epidemics in heterogeneous populations: aspects of optimal vaccination policies. Math. Med. Biol. 6(3): 137–159.
Centers for Disease Control and Prevention. 2009a. Allocation and distribution Q&A. Available at https://www.cdc.gov/H1N1flu/vaccination/statelocal/centralized_distribution_qa.htm (accessed date January 20, 2017).
Centers for Disease Control and Prevention. 2009b. Novel H1N1 flu situation update. Available at https://www.cdc.gov/h1n1flu/updates/061909.htm (accessed date January 20, 2017).
Centers for Disease Control and Prevention. 2016. Questions and answers. Available at https://www.cdc.gov/flu/pandemicresources/basics/faq.html (accessed date January 20, 2017).
Cho S.‐H. 2010. The optimal composition of influenza vaccines subject to random production yields. Manuf. Serv. Oper. Manag. 12(2): 256–277.
Cooper B. S., Pitman R. J., Edmunds W. J., Gay N. J. 2006. Delaying the international spread of pandemic influenza. PLoS Med. 3(6): e212.
Diekmann O., Heesterbeek H., Britton T. 2012. Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, Princeton, NJ.
Duijzer L. E., van Jaarsveld W. L., Wallinga J., Dekker R. 2016. The most efficient critical vaccination coverage and its equivalence with maximizing the herd effect. Math. Biosci. 282: 68–81.
Duijzer L. E., van Jaarsveld W. L., Dekker R. 2017a. The benefits of combining early aspeci fic vaccination with later specific vaccination. Technical report, Econometric Institute, Erasmus School of Economics. Report number: EI 2017‐03.
Duijzer L. E., van Jaarsveld W. L., Dekker R. 2017b. Literature review – The vaccine supply chain. Technical report, Econometric Institute, Erasmus School of Economics. Report number: EI 2017‐01.
Ferguson N. M., Cummings D. A. T., Cauchemez S., Fraser C., Riley S., Meeyai A., Iamsirithaworn S., Burke D. S. 2005. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437(7056): 209–214.
Fine P. E. M. 1993. Herd immunity: History, theory, practice. Epidemiol. Rev. 15(2): 265–302.
Germann T. C., Kadau K., Longini I. M., Macken C. A. 2006. Mitigation strategies for pandemic influenza in the United States. Proc. Natl Acad. Sci. 103(15): 5935–5940.
Ginsberg W. 1974. The multiplant firm with increasing returns to scale. J. Econ. Theory 9(3): 283–292.
Goldstein E., Apolloni A., Lewis B., Miller J. C., Macauley M., Eubank S., Lipsitch M., Wallinga J. 2009. Distribution of vaccine/antivirals and the least spread line in a stratified population. J. R. Soc. Interface 7(46): 755–764.
Goldstein E., Wallinga J., Lipsitch M. 2012. Vaccine allocation in a declining epidemic. J. R. Soc. Interface 9(76): 2798–2803.
Greenbaum A., Chartier T. P. 2012. Numerical Methods: Design, Analysis, and Computer Implementation of Algorithms. Princeton University Press, Princeton.
Halloran M.E., Ferguson N. M., Eubank S., Longini I. M., Cummings D. A. T., Lewis B., Xu S., Fraser C., Vullikanti A., Germann T. C., Wagener D., Beckman R., Kadau K., Barrett C., Macken C. A., Burke D. S., Cooley P. 2008. Modeling targeted layered containment of an influenza pandemic in the United States. Proc. Natl Acad. Sci. 105(12): 4639–4644.
Hethcote H. W. 2000. The mathematics of infectious diseases. SIAM Rev. 42(4): 599–653.
Hethcote H. W., Waltman P. 1973. Optimal vaccination schedules in a deterministic epidemic model. Math. Biosci. 18(3): 365–381.
Hill A. N., Longini I. M. Jr. 2003. The critical vaccination fraction for heterogeneous epidemic models. Math. Biosci. 181(1): 85–106.
Kaplan E. H., Merson M. H. 2002. Allocating HIV‐prevention resources: Balancing efficiency and equity. Am. J. Public Health 92(12): 1905–1907.
Keeling M. J., Rohani P. 2008. Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton, NJ.
Keeling M. J., Ross J. V. 2015. Optimal prophylactic vaccination in segregated populations: When can we improve on the equalising strategy? Epidemics 11: 7–13.
Keeling M. J., Shattock A. 2012. Optimal but unequitable prophylactic distribution of vaccine. Epidemics 4(2): 78–85.
Kermack W. O., McKendrick A. G. 1927. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115(772): 700–721.
Kinlaw K., Levine R. 2007. Ethical guidelines in pandemic influenza. Centers for Disease Control and Prevention. Available at https://www.cdc.gov/od/science/integrity/phethics/docs/panflu_ethic_guidelines.pdf (accessed date March 2, 2017).
Klepac P., Laxminarayan R., Grenfell B. T. 2011. Synthesizing epidemiological and economic optima for control of immunizing infections. Proc. Natl Acad. Sci. 108(34): 14366–14370.
Lefevre CL. 1979. Optimal control of the simple stochastic epidemic with variable recovery rates. Math. Biosci. 44(3): 209–219.
Ma J., Earn D. J. D. 2006. Generality of the final size formula for an epidemic of a newly invading infectious disease. Bull. Math. Biol. 68(3): 679–702.
Mamani H., Chick S. E., Simchi‐Levi D. 2013. A game‐theoretic model of international influenza vaccination coordination. Management Sci. 59(7): 1650–1670.
Matrajt L., Longini I. M. Jr. 2010. Optimizing vaccine allocation at different points in time during an epidemic. PLoS ONE 5(11): e13767.
Matrajt L., Halloran M. E., Longini I. M. Jr. 2013. Optimal vaccine allocation for the early mitigation of pandemic influenza. PLoS Comput. Biol. 9(3): e1002964.
McCoy J. H., Johnson M. E. 2014. Clinic capacity management: Planning treatment programs that incorporate adherence. Prod. Oper. Manag. 23(1): 1–18.
Medlock J., Meyers L. A., Galvani A. 2009. Optimizing allocation for a delayed influenza vaccination campaign. PLoS Currents 1: RRN1134.
Monto A. S. 2006. Vaccines and antiviral drugs in pandemic preparedness. Emerg. Infect. Dis. 12(1): 55.
Mylius S. D., Hagenaars T. J., Lugnér A. K., Wallinga J. 2008. Optimal allocation of pandemic influenza vaccine depends on age, risk and timing. Vaccine 26(29): 3742–3749.
Özaltin O. Y., Prokopyev O. A., Schaefer A. J., Roberts M. S. 2011. Optimizing the societal benefits of the annual influenza vaccine: A stochastic programming approach. Oper. Res. 59(5): 1131–1143.
Plans‐Rubió P. 2012. The vaccination coverage required to establish herd immunity against influenza viruses. Prev. Med. 55(1): 72–77.
Roos R. 2009. CDC says vaccine shortage likely to outlast current H1N1 wave. Center Infect. Dis. Res. Policy. Available at http://www.cidrap.umn.edu/news-perspective/2009/11/cdc-says-vaccine-shortage-likely-outlast-current-h1n1-wave (accessed date March 2, 2017).
Rowthorn R. E., Laxminarayan R., Gilligan C. A. 2009. Optimal control of epidemics in metapopulations. J. R. Soc. Interface 6(41): 1135–1144.
Sattenspiel L., Dietz K. 1995. A structured epidemic model incorporating geographic mobility among regions. Math. Biosci. 128(1): 71–91.
Simons E., Mort M., Dabbagh A., Strebel P., Wolfson L. 2011. Strategic planning for measles control: Using data to inform optimal vaccination strategies. J. Infect. Dis. 204(suppl 1): S28–S34.
Srivastava V., Bullo F. 2014. Knapsack problems with sigmoid utilities: Approximation algorithms via hybrid optimization. Eur. J. Oper. Res. 236(2): 488–498.
Sun P., Yang L., de Véricourt F. 2009. Selfish drug allocation for containing an international influenza pandemic at the onset. Oper. Res. 57(6): 1320–1332.
Tanner M. W., Sattenspiel L., Ntaimo L. 2008. Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. Math. Biosci. 215(2): 144–151.
Teytelman A., Larson R. C. 2013. Multiregional dynamic vaccine allocation during an influenza epidemic. Serv. Sci. 5(3): 197–215.
Tuite A. R., Fisman D. N., Kwong J. C., Greer A. L. 2010. Optimal pandemic influenza vaccine allocation strategies for the Canadian population. PLoS ONE 5(5): e10520.
Uribe‐Sánchez A., Savachkin A., Santana A., Prieto‐Santa D., Das T. K. 2011. A predictive decision‐aid methodology for dynamic mitigation of influenza pandemics. OR Spectrum 33(3): 751–786.
Wallinga J., Lipsitch M. 2007. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. R. Soc. Lond. B Biol. Sci. 274(1609): 599–604.
Wallinga J., van Boven M., Lipsitch M. 2010. Optimizing infectious disease interventions during an emerging epidemic. Proc. Natl Acad. Sci. 107(2): 923–928.
Wu J. T., Riley S., Leung G. M. 2007. Spatial considerations for the allocation of pre‐pandemic influenza vaccination in the United States. Proc. R. Soc. B Biol. Sci. 274(1627): 2811–2817.
Yuan E. C., Alderson D. L., Stromberg S., Carlson J. M. 2015. Optimal vaccination in a stochastic epidemic model of two non‐interacting populations. PLoS ONE 10(2): e0115826.

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
EMAIL ARTICLE LINK
Share on social media

Share access to this article

Sharing links are not relevant where the article is open access and not available if you do not have a subscription.

For more information view the Sage Journals article sharing page.

Information, rights and permissions

Information

Published In

Article first published online: January 1, 2018
Issue published: January 2018

Keywords

  1. resource allocation
  2. optimization
  3. vaccination
  4. disease modeling

Rights and permissions

© 2017 The Authors.
Request permissions for this article.

Authors

Affiliations

Lotty E. Duijzer
Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, P.O. Box 1738, 3000, DR Rotterdam, The Netherlands
Willem L. vanJaarsveld
Department of Industrial Engineering & Innovation Sciences, Eindhoven University of Technology, P.O. Box 513, 5600, MB Eindhoven, The Netherlands
Jacco Wallinga
National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA Bilthoven, The Netherlands
Rommert Dekker
Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, P.O. Box 1738, 3000, DR Rotterdam, The Netherlands

Notes

Corresponding author: Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands, Email: [email protected].

Metrics and citations

Metrics

Journals metrics

This article was published in Production and Operations Management.

VIEW ALL JOURNAL METRICS

Article usage*

Total views and downloads: 6

*Article usage tracking started in December 2016


Articles citing this one

Receive email alerts when this article is cited

Web of Science: 0

Crossref: 53

  1. Spatiotemporal vaccine allocation policies for epidemics with behavior...
    Go to citation Crossref Google Scholar
  2. Operational research in health care: Overview and future research agen...
    Go to citation Crossref Google Scholar
  3. Optimal spatial evaluation of a pro rata vaccine distribution rule for...
    Go to citation Crossref Google Scholar
  4. Fair and efficient vaccine allocation: A generalized Gini index approa...
    Go to citation Crossref Google Scholar
  5. Fair-split distribution of multi-dose vaccines with prioritized age gr...
    Go to citation Crossref Google Scholar
  6. A fuzzy decision framework of lean-agile-green (LAG) practices for sus...
    Go to citation Crossref Google Scholar
  7. Optimality of Maximal-Effort Vaccination
    Go to citation Crossref Google Scholar
  8. Mitigation themes in supply chain research during the COVID-19 pandemi...
    Go to citation Crossref Google Scholar
  9. The role of operations and supply chain management during epidemics an...
    Go to citation Crossref Google Scholar
  10. An optimization model for distribution of influenza vaccines through a...
    Go to citation Crossref Google Scholar
  11. Optimal vaccine allocation for the control of sexually transmitted inf...
    Go to citation Crossref Google Scholar
  12. Resource allocation problems with expensive function evaluations
    Go to citation Crossref Google Scholar
  13. Asymptotic Analysis of Optimal Vaccination Policies
    Go to citation Crossref Google Scholar
  14. Inventory systems with uncertain supplier capacity: an application to ...
    Go to citation Crossref Google Scholar
  15. Comparative performance of between-population vaccine allocation strat...
    Go to citation Crossref Google Scholar
  16. A Bi-Level Vaccination Points Location Problem That Aims at Social Dis...
    Go to citation Crossref Google Scholar
  17. Optimal vaccination: various (counter) intuitive examples
    Go to citation Crossref Google Scholar
  18. Infectious disease control in metapopulations with limited resources
    Go to citation Crossref Google Scholar
  19. Infection transmission and prevention in metropolises with heterogeneo...
    Go to citation Crossref Google Scholar
  20. Emergency order allocation of e-medical supplies due to the disruptive...
    Go to citation Crossref Google Scholar
  21. First or Second Doses First? Vaccine Allocation Under Limited Supply
    Go to citation Crossref Google Scholar
  22. Bi‐objective optimization of a stochastic resilient vaccine distributi...
    Go to citation Crossref Google Scholar
  23. Managing two‐dose COVID‐19 vaccine rollouts with limited supply: Opera...
    Go to citation Crossref Google Scholar
  24. A decision analytic approach for social distancing policies during ear...
    Go to citation Crossref Google Scholar
  25. Vaccine and inclusion
    Go to citation Crossref Google Scholar
  26. How can age-based vaccine allocation strategies be optimized? A multi-...
    Go to citation Crossref Google Scholar
  27. Optimizing Vaccine Allocation Strategies in Pandemic Outbreaks: An Opt...
    Go to citation Crossref Google Scholar
  28. Impacts of production, transportation and demand uncertainties in the ...
    Go to citation Crossref Google Scholar
  29. Bi-objective optimization for a multi-period COVID-19 vaccination plan...
    Go to citation Crossref Google Scholar
  30. Dynamical intervention planning against COVID-19-like epidemics
    Go to citation Crossref Google Scholar
  31. An epidemiology-based model for the operational allocation of COVID-19...
    Go to citation Crossref Google Scholar
  32. Epidemic control with endogenous treatment capability under popular di...
    Go to citation Crossref Google Scholar
  33. Dynamic resource allocation for controlling pathogen spread on a large...
    Go to citation Crossref Google Scholar
  34. Joint allocation of emergency medical resources with time-lag correlat...
    Go to citation Crossref Google Scholar
  35. Prediction of Priority to Individual for COVID Vaccine Distribution Us...
    Go to citation Crossref Google Scholar
  36. Vaccination Progress Prediction in the U.S., India, and Brazil by Mach...
    Go to citation Crossref Google Scholar
  37. An Analytic Framework for Effective Public Health Program Design Using...
    Go to citation Crossref Google Scholar
  38. OM Forum—Pandemics/Epidemics: Challenges and Opportunities for Operati...
    Go to citation Crossref Google Scholar
  39. Complexity analysis of cold chain transportation in a vaccine supply c...
    Go to citation Crossref Google Scholar
  40. Multi-period integrated planning for vaccination station location and ...
    Go to citation Crossref Google Scholar
  41. A data-driven optimization approach for multi-period resource allocati...
    Go to citation Crossref Google Scholar
  42. Allocating epidemic response teams and vaccine deliveries by drone in ...
    Go to citation Crossref Google Scholar
  43. A novel vehicle routing problem for vaccine distribution using SIR epi...
    Go to citation Crossref Google Scholar
  44. Model-informed COVID-19 vaccine prioritization strategies by age and s...
    Go to citation Crossref Google Scholar
  45. Fair insurance premium rate in connected SEIR model under epidemic out...
    Go to citation Crossref Google Scholar
  46. Optimal vaccine allocation during the mumps outbreak in two SIR centre...
    Go to citation Crossref Google Scholar
  47. Infectious or Recovered? Optimizing the Infectious Disease Detection P...
    Go to citation Crossref Google Scholar
  48. Core Allocations for Cooperation Problems in Vaccination
    Go to citation Crossref Google Scholar
  49. Optimal influenza vaccine distribution with equity
    Go to citation Crossref Google Scholar
  50. Allocation of COVID-19 Vaccines Under Limited Supply
    Go to citation Crossref Google Scholar
  51. A theoretical single-parameter model for urbanisation to study infecti...
    Go to citation Crossref Google Scholar
  52. A multi-criterion approach to optimal vaccination planning: Method and...
    Go to citation Crossref Google Scholar
  53. The benefits of combining early aspecific vaccination with later speci...
    Go to citation Crossref Google Scholar

Figures and tables

Figures & Media

Tables

View Options

Get access

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:


Alternatively, view purchase options below:

Access journal content via a DeepDyve subscription or find out more about this option.

View options

PDF/ePub

View PDF/ePub

Full Text

View Full Text