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Abstract  

Dissolvable microneedle (DMN) patches for immunization have multiple benefits, including 

vaccine stability and ease-of-use. However, conventional DMN fabrication methods have several 

drawbacks. Here we describe a novel, microfluidic, drop dispensing-based dissolvable 

microneedle production method that overcomes these issues. Uniquely, heterogeneous arrays, 

consisting of microneedles of diverse composition can be easily produced on the same patch. 

Robustness of the process was demonstrated by incorporating and stabilizing adenovirus and 

MVA vaccines. Clinically-available trivalent inactivated influenza vaccine (TIV) in DMN patches 

is fully stable for greater than 6 months at 40ºC. Immunization using low dose TIV-loaded DMN 

patches induced significantly higher antibody responses compared to intramuscular-based 

immunization in mice. TIV-loaded patches also induced a broader, heterosubtypic neutralising 

antibody response. By addressing issues that will be faced in large-scale fill-finish DMN 

fabrication processes and demonstrating superior thermostable characteristics and 

immunogenicity, this study progresses the translation of this microneedle platform to eventual 

clinical deployment. 

Keywords: Microneedle, influenza vaccine, broadly-neutralizing antibody, stability, virus vector 

vaccine 

 

Introduction 

Although routinely used, systemic vaccine injection has several drawbacks. Hypodermic needle 

injection is painful, requires trained personnel, generates hazardous sharps-waste and the 

vaccine requires cold-chain storage and distribution [1-3]. This results in an unsustainable 

financial and logistic costs to many immunization programs [1, 2]. Vaccine-loaded dissolvable 

microneedles are micron-scale protrusions that are sharp enough to insert into the skin. They 
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are composed of suitable excipients that should stabilise vaccines in the dry, solid state. On skin 

insertion the microneedle material dissolves and the vaccine is delivered to the body. 

Dissolvable microneedle (DMN) patches for skin-based immunization offer several benefits to 

healthcare systems and individual end-users including ease of use, lack of requirement for 

vaccine reconstitution, more efficient and cost-

effective logistics by removal of cold chain, 

elimination of needles, syringes and hazardous 

waste and small package size.  

Several DMN patch production methods have been 

proposed [4-8]. Most of these methods rely on filling 

a liquid formulation into a mould, having 

microdepressions or pores that define the final 

structure and composition of the microneedles, and 

subsequent drying and/or hardening of the material 

(Fig. 1a). Filling the liquid formulation into the 

microdepressions is not spontaneous due to the sub-micron dimensions of the tips, surface 

tension and often high viscosity of the liquid formulation. Incomplete filling of the microneedle 

mould results in poor microneedle tip formation or an inability to remove the dissolvable 

microneedle from the mould (Fig. 1d). Approaches that are most often used to overcome this 

problem include processes such as centrifuging, pressurizing or vacuuming of the mould with 

the formulation deposited on its top and/or inclusion of surfactants in the formulation [9-11]. 

When dry, the solid material, which has taken the shape of the mould, is pulled out (Fig 1a). One 

of the principle drawbacks of these methods is the need to apply larger volumes of formulation 

onto the microneedle moulds in the filling step where only a fraction of the volume used actually 

fills the microneedle pores while the rest remains unused. Although the formulation remaining on 
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the surface of the moulds may be reused, such recycling approaches may imply compliance 

issues in a Good Manufacturing Practice (cGMP) environment. Therefore, although a proposed 

advantage of DMN patches is dose sparing at the point of use, current methods of fabrication 

result in wasted vaccine at the point of manufacture.  Other drawbacks of this technology at an 

industrial scale include the reliance on batch-based/semi-continuous process operations 

(centrifuging, pressurizing or vacuuming) inhibiting its scale-up to a flexible, continuous 

manufacturing process and the difficulty of easily creating heterogeneous patches containing 

individual microneedles that are composed of different materials. Here we describe a novel 

process that avoids waste, is designed for scalability using existing automated micro-dispensing 

systems, and is amenable for continuous manufacture. We believe that designing a fabrication 

process with these advantages increases the potential for translation from preclinical scale to 

commercial scale manufacture for the manufacturer stakeholder. We solved the problem of 

wasted vaccine by only dispensing the formulation on top of the microneedle cavities [12]. 

Issues of incomplete filling of the microneedle cavities, due to surface tension of the formulation 

with the mould are overcome by pre-filling the mould with water and dispensing the water-based, 

vaccine-containing formulation onto each microdepression. The resulting microneedles 

completely replicate the structure of the original master template; the DMN had smooth walls 

and sharp tips. As the microdepressions on these microneedle patches are filled in a sequential 

mode this opens the possibility for making heterogeneous patches consisting of microneedles 

made of different formulations. Similar to other DMN production methods, the described method 

can also easily produce DMN with formulation concentrated in the microneedle tips.  

Having defined this novel process, the next objective was to determine the potential utility of 

DMN patches incorporating clinically relevant vaccines. We characterized the thermostability of 

labile recombinant live virus vaccines that are dependent on retention of sensitive bio-

physicochemical properties for immunogenicity [13]. These vaccines are in general less stable 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5 

 

than inactivated vaccines.   Subsequently, we determined the thermostability and 

immunogenicity of the clinically licensed 2011/2012 seasonal trivalent inactivated influenza 

vaccine (TIV) when incorporated in DMN patches. This study therefore demonstrates that an 

efficient process for manufacturing dissolvable microneedle patches has strong potential for 

stabilizing clinically relevant vaccines outside of cold chain and for retaining and broadening 

vaccine immunogenicity after incorporation into dissolvable microneedles.  

MATERIALS AND METHODS 

Manufacture of PDMS microneedle moulds 

Silicon microneedle master templates were prepared by wet-etch process using a previously 

reported approach [14]. For this study pyramidal silicon microneedles arranged on arrays of 12 x 

12 (length: 280 m, base diameter: 187 m) or 5 x 5 (length: 500 m, base diameter: 333 m) 

microneedles were used as a moulding templates for fabrication of microneedle cavities in 

polydimethylsiloxane (PDMS) moulds. The PDMS moulds were prepared as previously 

described [15].  

Vaccines and formulations 

Trehalose, methylene blue, Congo red were from Sigma; polyvinylalcohol (PVA, molecular 

weight 130000) from Kurray and polyvinylpyrrolidone (PVP) was supplied from BASF. MVA 

encoding the red fluorescent protein (MVA-RFP) or -galactosidase (MVA--gal) and adenovirus 

serotype 5 encoding mCherry protein (AdV-mCherry) were kindly provided by The Jenner 

Institute, Oxford, UK. AdV expressing -galactosidase was procured from Clontech. Influvac 

2011-12 Northern Hemisphere (NH) (Abbott) and 2011-12 Fluarix NH (GSK) vaccines were used 

in these studies. All vaccines contained 15µg of haemagglutinin from each of the following 

strains: A/California/7/2009 (H1N1)-derived strain using NYMC X-181, A/Perth/16/2009 (H3N2)-

like strain used NYMC X-187 derived from A/Victoria/210/2009 and B/Brisbane/60/2008. The 
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vaccine was concentrated, using Amicon centrifugal filter units (Millipore) with a 10kDa 

specification, when a dose of 1.5 µg of each HA was incorporated into a 1cm2 patch. It was not 

concentrated when the lower dosage of 0.375 µg of each HA was used. The vaccine was 

concentrated 7.9 times prior to formulation, to create a vaccine with a HA concentration of 238 

µg/ml (compared to initial 30 µg/ml). Formulation was then added to this concentrated vaccine 

so that 1.5 µg of each HA was loaded into each 1cm2 microneedle mould. 

Dissolvable microneedle fabrication 

For the preparation of microneedles with a single formulation throughout, either 50% (w/v) 

trehalose solution in water or a combination of 25% trehalose and 7.5% polyvinyl alcohol (w/v) in 

water was used. For the preparation of arrays with two different formulations 25% trehalose 

(w/v) in water solution was used for making the microneedle tips and 40% (w/v) (PVP) in 96% 

ethanol (v/v) was used in the base. Methylene blue, Congo red dye (1 mg/mL) or red fluorescent 

latex microspheres with 0.1 m diameter (F-8801, Invitrogen) were added for visualization 

experiments, where appropriate. Microneedle cavities were filled with water by spraying using 

two substance nozzle and compressed air (Düsen-Schlick 970 S8, Germany). Excess water on 

the surface of the mould was scrapped off the mould using a blade. Formulation was delivered 

directly onto the water-filled microneedle pores using a thin silicon capillary (100 m ID) 

connected to a syringe pump delivering formulation at a rate of 1-3 L/min. Following delivery of 

the formulation onto moulds, microneedles were dried for 2 hours or overnight at room 

temperature (approximately 21ºC) in the presence of dessicant. After transfer onto medical 

grade adhesive tape (1525L Poly Med tape, 3M) arrays were kept in a dry ambient environment 

in the presence of dessicant. Two-layered microneedles, where the active material is 

concentrated to the tip, were formed by partially filling the pore. Partial filling of the microneedle 

tip was achieved by either using the same volume of less concentrated formulation containing a 

lower amount of solutes or by using a smaller volume of more concentrated solution. Both 
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options delivered an amount of final dry matter sufficient for only partial filling of the tip resulting 

in microneedles with the formulation concentrated in the tip region only. After drying a second, 

inert layer of, for example, polyvinylpyrrolidone (PVP), can be applied to the mould to fill the 

remaining microneedle pore volume.  

Microneedle patches were visualized either using light microscope or a 10x magnifier attached 

to a photo camera. Patches containing fluorescent microspheres were photographed using 

fluorescent microscope (Nikon). Visualization of the drying process was performed on PDMS 

moulds with 280 m tall microneedle pores. Formulation consisting of 45% (w/v) trehalose and 

methylene blue dye was delivered on PDMS mould and immediately positioned under the 

microscope. The drying process was recorded for 20 min taking photographs in regular intervals. 

Kinetics of dissolution of dissolvable microneedles 

Kinetics of dissolution of microneedles was performed using cadaver pig skin. Arrays of 500 m 

tall microneedles were prepared as described with microneedle tips made of trehalose with 

Congo red dye and microneedles bases made of PVP with methylene blue. Following drying, 

patches were applied onto previously shaved pig skin and left for 1 s, 10 min or 60 min in the 

skin kept at 37 °C. Patches and skin were imaged using a light microscope after patch removal 

from the skin. 

Skin-transfection studies 

AdV and MVA expressing -galactosidase were embedded in the microneedles at the 

approximate concentration of 1.5x104 pfu per microneedle. Freshly excised pig skin was used 

for the ex vivo transfection studies essentially as described [13] .  

Vaccine Stability Studies  

MVA-RFP was formulated in 25% trehalose with 7.5% PVA (w/v) solution at a starting 

concentration of 109 pfu/mL. AdV-mCherry was formulated in 50% (w/v) trehalose solution at the 
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concentration of 2 x 109 pfu/mL. FITC-Na was added in all virus vaccine formulations at the 

concentration of 1 mg/mL to enable precise quantification of the amount of formulation delivered 

onto each individual mould. TIV-loaded DMN patches were fabricated using 11% trehalose (w/v) 

and 2.75% PVA (w/v), and 1.5 µg of each of the three HA antigens, unless otherwise stated.  

Patches containing test components were sealed into nitrogen-purged individual glass vials with 

dessicant. Packaged and sealed vaccine-loaded DMN were stored in a stability chamber at 

40°C, with the surrounding chamber maintained at 75% relative humidity (RH), in accordance 

with ICH guidelines, for the indicated time.   

Assessing Live Vaccine Viability 

Virus vaccines were kept at ambient temperature for up to 14 days. Survival of AdV and MVA 

expressing fluorescent proteins was measured using flow cytometry. Arrays of microneedles 

were dissolved in cell culture medium at ambient temperature. DF-1 (MVA-RFP) or HEK293A 

(AdV-mCherry) cells grown under standard conditions were infected with virus solutions and left 

overnight in CO2 incubator. After 24 hours cells were harvested and infection rate was calculated 

by measuring fluorescence of infected cells expressing RFP or mCherry proteins using LSRII 

flow cytometer (Becton-Dickinson). Survival rate was calculated from standard curve using 

samples of known titer (in PFU/mL units) and was expressed as log PFUeq/mL units (logarithmic 

value of plaque forming unit equivalents per mL) [13].  

Single Radial Immunodiffusion (SRID) 

This was performed as previously reported [16, 17]. Briefly detergent pre-treatment of samples 

and reference agents was performed with a 10% (w/v) Zwittergent 3-14 detergent solution 

(Sigma) to a final concentration of 1% detergent. Serially diluted sample mixtures were loaded 

into appropriate wells of a 1% (w/w) agarose gel, containing vaccine strain specific HA antiserum 

(National Institute for Biological Standards and Control) and incubated for 18 hours at RT. The 

gel was stained using coomassie brilliant blue (Invitrogen) according to manufacturer’s 
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instructions followed by destaining with deionised water. Immunodiffusion rings were then 

measured and analysed using the slope-ratio method [18] to determine the HA content, 

according to regulatory approved bioassay analysis method.   

Immunisation Studies 

Hair was removed from the ears of mice using depilatory cream two days before immunization. 

On the day of immunization a 1cm2 patch was applied to each ear of female 6–8 week old 

BALB/c mice and pressed, by hand, using a force of approximately 10–20 N per patch, in a 

vertical direction [15, 19, 20].  Patches were macroscopically inspected after removal from the 

ear and no material was found on them; this provided qualitative assurance that microneedles 

had dissolved from the adhesive backing. The efficiency of vaccine delivery into skin was not 

quantified. Patches were maintained in place using an adhesive fabric strip for 18 hours before 

being removed. Alternatively, liquid vaccine was injected by the intramuscular route (25 L into 

each gastrocnemius muscle). All murine experiments were conducted in strict accordance with 

the terms of licences from the Irish Department of Health and Children, under the Cruelty to 

Animals Act 1876  (licence numbers B100/4034 and B100/4478) and according to the approval 

of the UCC AECC committee.  

Antibody ELISA 

Serum antigen-specific IgG responses were assessed as previously described [20]. The 

following reagents were obtained through BEI Resources, NIAID, NIH: H1 Hemagglutinin (HA) 

protein from Influenza Virus, A/California/04/2009 (H1N1)pdm09, recombinant from Baculovirus, 

NR-13691 and Hemagglutinin (HA) protein with C-Terminal histidine tag from Influenza Virus, 

A/Perth/16/2009 (H3N2), recombinant from Baculovirus, NR-42974. Briefly, Nunc C maxisorp 

plates were coated with trivalent influenza vaccine (TIV) at a concentration of 0.75 µg/ml or 

recombinant A/California/7/2009 (H1N1) or A/Perth/16/2009 (H3N2) at a concentration of 1 

µg/ml in carbonate bicarbonate buffer overnight at 4°C. After blocking, sera were serially diluted 
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on the plate. After 2 hours incubation, anti-mouse IgG-HRP antibody at a dilution of 1:10,000 

was added for one hour. Plates were washed and incubated with 50µl of TMB for thirty minutes. 

Plates were then read at 655nm and titres were determined using endpoint titre method [20].  

Determination of neutralising antibodies using lentiviral pseudotypes 

Pseudotype assays were performed as previously described [21-23]. Briefly, influenza 

lentiviruses expressing firefly luciferase and harbouring A/South Carolina/1/1918 (H1N1) 

A/Udorn/307/1972 (H3N2) and A/Vietnam/1203/2004 (H5N1) HAs were used initially. Then to 

assess the presence of stalk-directed antibodies lentiviruses bearing the 

A/duck/Memphis/546/1974 (H11N9) HA or a chimeric HA consisting of the H11 head and the 

A/South Carolina/1/1918 H1 stalk were used. Mouse serum samples were serially diluted 

twofold from 1:40 in a 96-well flat bottom plate. A comparable amount of each pseudotype 

(giving an output of 1,000,000 Relative Light Units) was incubated with sera for 1 h at 37°C 

before the addition of 1.5 × 104 293T/17 cells per well. Luciferase activity was measured 48 h 

later and IC50 neutralization titre was determined using GraphPad Prism as the serum dilution 

yielding a 50% reduction in luciferase activity normalized  using control wells with virus and with 

cells alone.  

 

Hemagglutination Inhibition Assay (HAI) 

Serum samples were first treated with receptor destroying enzyme by incubation overnight at 

37°C, and then incubated 30 min at 56°C. Sera were serially diluted, mixed with 8 HA units 

(HAU) of inactivated influenza virus (A/California/7/2009 (H1N1), A/Perth/16/2009 (H3N2)) and 

incubated for 30 min at room temperature prior to adding 0.7% turkey red blood cells. The 

highest serum dilution preventing hemagglutination was scored as the HAI titre. 

RESULTS 

Fabrication of dissolvable microneedle arrays 
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We developed a method for fabrication of DMN that will resolve drawbacks of the current 

methods. The proposed method (Fig. 1b) avoids the need for vacuum or centrifugation (Fig. 1a), 

it is designed to be scalable to a production level and it does not waste or involve any re-use of 

materials. 

Moulds made from PDMS were first spray-filled with 

water [15] to fill cavities and remove air. Excess water 

was then removed from mould surface using a flat blade. 

A small amount of concentrated formulation 

(approximately 20 nL for 280 m microneedles to 150 nL 

for 500 m microneedles) was then dispensed directly on 

top of each microneedle well so that formulation and 
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water were in direct contact (Supplementary Video 1). The hydrophobic nature of the PDMS 

mould prevented the formulation wetting the PDMS mould surface and retained the formulation 

over the water filled microdepression. A concentration gradient was immediately formed 

between the water in the microneedle mould and the formulation on top. Diffusion of water into 

the upper layer and formulation into the microneedle pore equilibrated the concentration in the 

two compartments (Fig. 1c). The diffusion efficiency of the concentrated formulation and water 

during the drying process was visualized in real time (Fig. 1c). The gradient was formed almost 

instantly as even after 1 min methylene blue dye contained in the upper drop was evenly 

distributed across the whole microneedle volume. As water evaporates the volume of the applied 

drop of formulation decreasesd leaving, at the end of the drying process, the amount of dried 

formulation sufficient to fill microneedle cavities completely. No vacuum or centrifugation was 

applied or was necessary during this diffusion process. The rate of diffusion of the active 

material into the microneedle pore can be affected by environmental temperature and humidity. 

For a 45% (w/v) trehalose formulation at ambient conditions, diffusion into the mould was 

complete after approximately 5 minutes (Fig. 1c). The importance of pre-filling with water is 

demonstrated by incomplete, stub-like structures being formed when this step is omitted (Fig 

1d). 

  

After drying, adhesive backing tape was applied onto the PDMS mould and attached to the 

microneedles. The microneedles are pulled from the mould by lifting the adhesive tape, resulting 

in an array of DMN arranged on adhesive backing, ready for application onto skin (Fig. 1). No 
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additional backing layer is required. All of these process steps can be conducted in a continuous 

manufacturing mode. As microneedles in the described method are not formed in a batch mode 

but in a sequential mode, it is straightforward to make heterogeneous patches consisting of 

microneedles made of different formulations (Fig 2). Dissolvable microneedles with formulation 

concentrated in the microneedle tips can also be easily made by using a less concentrated 

formulation or dispensing a smaller drop (Fig. 2c). The overall result, when dried, is that there is 

a much lower amount of dried solids deposited into the mould. The remaining space of the 

microneedle is then filled with a second layer.   

The next concern was that larger particles of interest present in the formulation (e.g. viral 

particles, long polymer chains) might not diffuse through the water-filled cavity as well as much 

smaller formulation excipients. This could result in non-homogeneous microneedles where 

active substances would be trapped in the microneedle bases while tips would be formed 

predominantly of excipients, resulting in sub-optimal delivery. This was addressed initially by 

using 100 nm fluorescent microspheres instead of methylene blue. Fluorescent microscopy of 

the formed microneedles shows that microspheres are uniformly distributed across the whole 

volume proving that concentration equilibration was effective even for large virus-size particles 

(Fig. 2d). 
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Functionality of DMN patches 

A critical property of DMN patches is their capacity to insert into and dissolve in skin at the 

required rate.  Ideally this process would be instantaneous for vaccines, to prevent re-use of 

patches, however, depending on the microneedle length, skin thickness and formulation release 

time, dissolution can range from few seconds to few hours or longer. We measured the kinetics 

of dissolution of our microneedles by insertion into cadaver pig skin. Test microneedles, 

consisting of tips made of trehalose with the addition of Congo red dye and a PVP base 

incorporating methylene blue, were inserted into pig skin and left for 1 s, 10 min and 60 minutes. 

While most of the formulation is released within the first few minutes, all the formulation is 

released in the skin between 10 minutes and one hour (Fig. 3).  
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Application of microneedles for transcutaneous delivery of live vaccines  

Having defined this process for inert small molecules or nanoparticles, we then examined its 

suitability for incorporating labile vaccines using formulations previously identified for spray-

coating these vaccines onto silicon microneedles [13, 24]. We tested the incorporation of 

recombinant adenovirus (AdV) and modified vaccinia virus Ankara (MVA) as these virus vectors 

are clinically relevant, yet they differ quite substantially in their biochemical and physical 

structure. By choosing appropriate trehalose-based formulations that did not degrade the 

vaccines in the liquid or solid state [13], both of these vaccines were successfully incorporated in 

DMN patches using this novel process. Patches containing either AdV or MVA expressing -

galactosidase were applied to freshly excised pig skin (Fig. 4a, b). Infection was achieved in 

both cases proving that viruses remained viable in microneedles, that microneedles penetrated 

the skin and that the delivered virus productively infected skin cells resulting in transgene 

expression. Infection was also obtained with microneedles with viruses embedded in the tips 

only (Fig 4c, d).  
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Dissolvable microneedle patches stabilize vaccines outside cold chain conditions.  

A motivation for developing the new method was to use microneedles as a vaccine stabilization 

as well as delivery platform. Stabilization of live viruses in a dried form and stable at ambient 

temperatures is a challenging task. Here we selected 50% trehalose (w/v) in water as the base 

formulation for AdV and a combination of 25% trehalose (w/v) and 7.5% PVA (w/v) solution in 

water for MVA. Results show that both viruses can be efficiently stabilized in DMN with a titer 

drop upon drying being less than 1 log unit over two weeks at ambient conditions (Fig. 5). It is 

important to note that most of the initial titer loss occurs during the initial drying period after 

which titer stabilises. Longer term stability studies of adenovirus are currently ongoing.  
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Long-term stability of clinically-used seasonal inactivated influenza vaccine in DMN 

Next, we determined longer-term stability of a clinically licensed subunit vaccine when 

incorporated into DMN patches using our novel process. Trivalent inactivated influenza vaccine 

(TIV) from the 2011/2012 northern hemisphere season was mixed with a trehalose/PVA 

formulation (11% and 2.75% w/v respectively) and incorporated into DMN patches (500 μm tall 

microneedles). Similar to other studies [4, 25], we concentrated the vaccine to facilitate loading 

higher doses within a small volume of the microneedle patch. No deterioration in antigen activity 

was observed during the concentration and DMN fabrication process, as assessed by single 

radial immunodiffusion (SRID) [16, 17], (Fig. S1). The stability of 1.5 μg of the H1N1 and H3N2 

hemagglutinin (HA) antigens per 1cm2 DMN patch was compared to full dose (15 μg of each 

antigen) 2011/2012 seasonal TIV vaccine in pre-filled syringe at 40°C using SRID and looking at 

anti-HA IgG serum responses in mice for up to 1 year post-fabrication (Fig 6). A second study 

also assessed the stability of a lower antigen dose (0.3 μg of each antigen) at 1 year post-

fabrication at accelerated conditions. Surprisingly, the A/Perth/16/2009 (H3N2) HA antigen 

demonstrated excellent stability in both the liquid and solid dosage forms (Fig 6b). Although the 

A/California/7/2009 (H1N1) HA antigen was labile in liquid form in the pre-filled syringe and had 

significantly degraded by day 10, this HA antigen was remarkably stable in the DMN patch and 

only began to decay between 6 and 12 months (Fig 6a). Immunogenicity studies supported the 
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SRID stability results (Fig 6 c,d); immunization of mice with vaccine-loaded DMN patches that 

were stored for up to 1 year induced significantly greater anti-H1N1 and anti-H3N2 HA IgG 

compared to the stored liquid vaccine. To our knowledge, this level of stability has not previously 

been demonstrated at these accelerated conditions (40ºC) for any influenza vaccine stabilization 

technology. Therefore incorporation of a subunit vaccine into DMN using this novel fabrication 

process significantly enhanced stability out of cold chain. 

Fig 6  
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Immunogenicity of clinically-available seasonal inactivated influenza vaccine (TIV) 

delivered with DMN patches in mice 

We next determined the immunogenicity of clinically-available, egg-derived, seasonal inactivated 

split trivalent influenza vaccine (TIV) freshly incorporated into DMN patches in mice. Previous 

studies with dissolvable microneedles and influenza vaccine have generally focused on whole 

inactivated monovalent virus or adjuvanted vaccines [8, 26-28]. As these vaccines are whole 

virus particles they are significantly more immunogenic compared to unadjuvanted TIV. Dose-

sparing of influenza vaccine can be achieved by the intradermal route using hollow microneedles 

[29] and has been demonstrated in mice with a virus-like particle influenza vaccine or TIV-coated 

onto steel or silicon microneedles [30, 31]. Here, incorporation of the trivalent 2011/2012 

seasonal TIV into DMN patches resulted in significant dose-sparing compared to IM 

administration. The IM route was chosen the vast majority of influenza vaccines are delivered by 

the IM route in the clinic; it also remains the standard route to which all other new influenza 

vaccine technologies, including microneedle delivery systems [4, 25, 32, 33] are compared as 

there is a wealth of information and understanding in both pre-clinical models and clinical trials. 

A single immunization with the lower dose TIV-loaded DMN patches (0.375 µg of each HA) 

induced an anti-HA IgG response that was significantly higher than responses induced by IM 

immunization, even at 12 weeks post-immunization (Figure 7).  Finally, immunization using the 

higher dose (3 µg HA) of vaccine in DMN patches induced a significantly more durable anti-

H1N1 HA IgG serum response 12 weeks after a single immunization (Fig 7B). The IgG 

response to the H3N2 HA was also higher in some, but not all mice in the DMN group. In a 

separate study using a different DMN formulation of 12.5% (w/v) trehalose and 5% (w/v) PVA, 

examination of hemagglutination inhibition titres (HAI), which measures antibody binding to the 

HA head region that mediates hemagglutination of red blood cells, demonstrated that there was 

no significant differences in HAI, however there was a delay in HAI induction in the DMN-treated 

mice compared to IM injection (Fig. 7C).
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Figure 7 
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heterologous and heterosubtypic group 1 and 2 influenza strains using a pseudotype lentiviral 

assay (PPV) [35]. The HA antigens from A/South Carolina/1/1918 (H1N1) and 

A/Vietnam/1203/2004 (H5N1) have 86% and 65% identity to the H1N1 strain included in the 

vaccine respectively, and A/Udorn/307/1972 (H3N2) has 88% homology to the vaccine H3N2 

HA antigen. Surprisingly a significant increase in the magnitude and duration of heterosubtypic 

immunity, to the H5N1 HA, was induced when a low dose of vaccine was delivered by DMN 

compared to IM (Fig. 8). The A/South Carolina/1/1918 response in the high dose DMN group 

was also significantly higher than the corresponding IM group at week 4. We then investigated if 

the significant increase in heterosubtypic immunity induced in low dose DMN group was due to 

neutralizing antibodies that recognized the stalk region of the HA antigen in the low dose vaccine 

groups using a chimeric HA antigen consisting of a head region from A/duck/Memphis/546/1974 

(H11N9) HA and a H1 stalk from A/South Carolina/1/1918 (H1N1). A response to the stalk of H1 

HA was deemed to be present if the IC50 to the chimeric antigen was greater than that against 

the H11 HA (Table 1). Using this PPV neutralization assay, a strong focusing of the anti-HA 

H1N1 response to the stalk region of HA was observed in the low dose IM group 8 weeks post-

immunization, with little or no NAb detectable to the head regions of the tested heterologous H1 

or heterosubtypic H5 HA antigens; this has not been previously demonstrated.  In contrast, 

immunization using low dose vaccine in DMN patches expanded the antibody repertoire: one 

month post-immunization neutralizing antibodies (NAb) against the head regions of both H1 and 

H5 HA antigens predominated, with little anti-stalk NAb response being observed. At 2 months 

post-immunization with DMN a broad distribution of neutralizing antibodies was evident, with 

NAb to non-stalk regions of A/South Carolina/1/1918 H1N1 predominating over NAb to H5 and 

to the stalk region (Fig. 8 and Table 1). Therefore DMN-based immunization induced a broad 

antibody neutralizing antibody range that recognized heterosubtypic influenza virus strains and 

the non-stalk regions of the HA antigens. 
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DISCUSSION 

Dissolvable microneedles offer several advantages to deliver vaccine safely and effectively and 

their successful development as needle-free, easy-to-administer, in vivo reconstitution, stable 

and cheap systems would address several logistic obstacles that are currently preventing 

immunization programmes from reaching their full potential [1, 2]. However, current fabrication 

methods are constrained by a number of obstacles, including the use of semi-continuous steps, 

such as centrifugation or vacuuming, that may not be easily scalable [4, 36].  Our over-arching 

aims were to develop a process to make dissolvable microneedle patches which overcomes this 

translational hurdle and to demonstrate the utility of this stabilized vaccine delivery platform at a 

pre-clinical level. Early methods of making DMN patches involved applying excess formulation to 

the mould, vacuuming the mould to pull the mixture into the microneedle pores and then gently 

removing the solution that had “puddled” on the surface of the mould with a micropipette [36]. 
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Although this method and similar, batch-based centrifugation-based methods [4, 25] is useful for 

lab-based investigation of the technology, it may not be optimal at large scale. Studies have 

suggested that microneedle patch-based immunization can lead to dose-sparing in mice [30, 

31], however, such an advantage will be lost at the microneedle fill-finish stage when significant 

losses are incurred using these methods. We therefore defined a novel fabrication process to 

overcome these issues and reduce the barriers to translation. Specifically, we created a simple 

process using pharmaceutically-relevant technologies that have been previously used at a high 

manufacturing scale, which did not result in waste of the active material and are amenable to 

continuous manufacturing [37]. The method is based on prefilling the moulds with water and 

subsequent delivery of the formulation on top of wells, after which the diffusion process 

equilibrates the formulation concentration in the whole microneedle volume. By precisely 

dispensing the vaccine formulation onto pre-filled moulds no material was wasted. Subsequent 

drying of the formulation delivered to the mould results in the dry and rigid microneedles that can 

be directly transferred to adhesive film in a form ready for application on the skin. As a result a 

further simplification over the current methods is that no additional backing layer anchoring the 

microneedles is needed. 

Another disadvantage of current methods for production of DMN is that the whole array 

effectively has to be made of the same type of microneedles (filled with the same formulation). 

The described method is also readily amenable to producing heterogeneous arrays containing 

two or more types of microneedles. This permits, for example, separation of incompatible 

materials or localization of microneedles that dissolve at different rates (permitting in vivo prime-

boosting), containing different antigens or doses or requiring different stabilising excipients.  

Thus, our process demonstrates strong potential to be scalable to manufacturing level and 

administration of different vaccines or delivery kinetics in the same patch. It also overcomes 

issues such as waste and potential GMP issues associated with reuse of excess formulation 
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during manufacture. In preliminary studies (data not shown) full human doses of TIV vaccine 

were easily incorporated into two 1cm2 patches. However, we focused on understanding the 

dose-response relationship at lower doses of vaccine per patch in the linear range of this dose 

curve. Furthermore, given the current discussion in the field on the effect of high concentration of 

full vaccine doses on antigen integrity [4, 25], incorporating a full human vaccine dose across a 

wider area than 1-2 cm2 may be required for optimal antigen stability in the future.    

Recombinant live viral vector vaccines are the subject of intensive research. Some of the most 

promising vaccine candidates for diseases such as Ebola virus malaria, HIV and tuberculosis as 

well as for certain cancer treatments [38-41] utilize these platforms. If efficacy of these vaccines 

is demonstrated, a critical issue that will need to then be overcome is the financial and logistic 

cost surrounding cold chain distribution and/or long-term stockpiling using non-cold chain 

storage systems. Stabilization of recombinant live viruses can be challenging, however, virus 

infectivity assays represent a sensitive screen for identifying formulations that will retain vaccine 

viability. Suitable formulations for stabilizing vaccine in DMN patches must be capable of 

preserving vaccine integrity during microneedle fabrication, upon drying and during subsequent 

storage. Many of the reported formulations containing viscosity enhancers such as CMC or 

surfactants [26, 28, 42-45] were not suitable in our work as we previously found them harmful for 

AdV and MVA [13].  Addition of other excipients may further enhance physicochemical and 

physical characteristics of microneedles, such as equilibrium moisture content, dissolution 

kinetics, mechanical strength or improve vaccine stability. In the case of MVA and the subunit 

TIV vaccine we found that addition of PVA into trehalose solution retains vaccine integrity upon 

drying and produces a highly stable vaccine product. Short-term stability of AdV and MVA 

vectors embedded in our microneedles and kept at ambient temperature over 14 days showed 

that viruses were well preserved in the dry form and initial losses are comparable or better than 

freeze drying methods [46]. In longer-term stability studies with TIV, a drop in H1N1 HA activity 
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was only observed between 6 and 12 months storage at 40°C. Indeed, mice immunized with a 

lower dose vaccine-DMN patch (0.3 µg/patch) that had been stored at 40ºC for 1 year 

responded with equivalent IgG responses [28] to those achieved with higher dose fresh patches 

(as seen in Fig 6). In contrast, we observed rapid degradation of the H1N1 HA, but not the H3N2 

HA in the pre-filled syringe, with >25% degradation of the H1N1 HA occurring within 10 days. An 

80% decrease in H1N1 HA content in the liquid vaccine was observed at day 45, however, the 

remaining dose (3μg) was immunogenic in mice, in keeping with the dose response experiments 

(Fig 6). Due to the dose-sparing nature of microneedle patches, a loss in HA content may not be 

evident in in vivo immunogenicity tests, therefore regulatory-approved SRID assays were used 

as a main stability assay. However, the immunogenicity data in these stability studies agrees 

with the known differences in the structural stability of these HA antigens from different influenza 

strains [47]. To our knowledge, such long-term stability of influenza vaccine in microneedle 

patches at such elevated temperatures has not been demonstrated. Recently, a dextran-based 

influenza vaccine-loaded DMN system [25] or hyaluronic acid-based microneedle patch system 

[48] demonstrated lower stability compared to our system when samples were stored at ambient 

(25ºC) or accelerated (40ºC) temperatures and tested using SRID or in vivo. However, a 

monovalent influenza vaccine demonstrated promising stability at 25ºC for 3 months [32] and 

using in-house ELISA-based assays, other formulations have been suggested for stabilizing 

influenza vaccines in microneedle structures [49] Other efforts that incorporated TIV onto 

transcutaneous patches were also less successful at elevated temperatures; however the 

relative stability of the H1N1 compared to H3N2 antigens was also observed in this study [50]. 

Our study therefore further confirms the capacity for the described formulations and fabrication 

process to contribute to protein stabilization and retention of antigen integrity. These findings, 

along with the other advantages of the fabrication method, demonstrate the potential of this 

dissolvable microneedle patch technology for stabilizing vaccine out of cold chain.  Furthermore, 

the cubic volume and weight of a final, packaged single-dose microneedle patch format will likely 
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be significantly lower than current single or multi-dose vaccine vials thereby further permitting 

more cost-effective distribution of vaccines.   

Although we focused on solving questions relating to the manufacturability of dissolvable 

microneedle patches, clinical usability of a final product will also need to be addressed in future 

studies. To enhance the cost-efficiency [51] and ease-of-use of this patch, we aim to develop a 

patch that does not require an applicator device. Our dissolvable microneedles have an 

octagonal cone shape with an ultra-sharp tip (approximately 50 nm) [52] and are mounted on 

flexible adhesive tape, compared to foam-based backing layers [53]. These dissolvable 

microneedles are mechanically strong enough to consistently penetrate murine and porcine skin 

using thumb pressure and without the need for an applicator. It is likely that the microneedle 

base will not remain embedded in the skin due to the skin’s elasticity [54]. Hence, formulation 

contained in the microneedle base may not be delivered but would rather remain either on the 

array or unused on the skin surface therefore necessitating DMN with vaccine in the tip only to 

be used. We demonstrated that live vaccine-loaded DMN that were 280µm or 500µm tall with 

vaccine throughout the microneedle or only in the tip successfully penetrated into porcine skin 

and delivered live virus. Successful skin transfection by live virus vaccines delivered by these 

DMN patches confirms that virus is well preserved in the microneedles, that microneedles 

penetrate the skin and that skin cells were successfully transfected and produced -

galactosidase. Similar to other microneedle technologies [32, 55, 56] it is unlikely that 100% of 

the vaccine was delivered into the skin, particularly when the vaccine is distributed throughout 

the microneedle. This suggests that even greater dose-sparing may have been achieved in this 

mouse model due to sub-optimal vaccine delivery efficiency. However, similar to these other 

publications [8], concentration of the active material into the tip of the microneedles, or increased 

dose adjustment [55] should enhance the efficiency of delivery, which will likely be more 

important in humans, compared to the thinner skin of mice. Microneedles with the formulation in 
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the whole microneedle volume (as used in these immunogenicity studies) could deliver vaccine 

components into both epidermis and dermis layers while tip-only microneedles could target 

dermis layer only. This could potentially result in markedly different responses [57]. In our 

immunogenicity studies we used vaccine distributed throughout the microneedle that likely 

delivers vaccine to murine epidermis and dermis. The type and breadth of the induced immune 

response induced may also be affected by the use of an applicator and the amount of force and 

stress experienced by the skin during this process [25], the formulation used, its dissolution 

kinetics and the location of antigen in the skin.  These parameters should thus be taken into 

account when comparing immunity induced by different microneedle technologies.  

An aim in the influenza vaccine field is to develop a universal vaccine that protects against a 

wide range of seasonal and newly emerging influenza virus strains. Substantial research 

demonstrates that antibody responses to the conserved stalk region of HA provide broadly 

cross-reactive neutralizing antibodies (NAb) [58-60]. A broadly neutralizing vaccine could 

function by potently inducing cross-reactive anti-stalk antibodies, however such a vaccine 

remains elusive. Alternatively, as is the case with influenza vaccine containing MF59 adjuvant, 

broadly neutralizing responses could be represented by antibodies that recognize a wider 

spread of HA epitopes, predominantly located in the HA1, head region, of the HA antigen [61, 

62]. We initially hypothesized that the higher anti-H5 HA responses in the low dose DMN groups 

would associate with higher responses against the H1 HA stalk.  However, we instead observed 

a more diverse profile of serum antibodies that recognized and neutralized heterologous and 

heterosubtypic HA antigens. This has not been previously demonstrated for microneedle-based 

immunization. It suggests that, compared to IM administration, vaccine delivery using these 

dissolvable microneedle patches permits expansion, differentiation and survival of multiple B cell 

clones in germinal centres, which recognize multiple epitopes in the HA antigen, few of which 

are in the stalk region of the HA antigen, similar to the action of MF59 adjuvant in humans [61, 
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62]. A more diverse B cell profile may also explain lower HAI titers at day 28 in the DMN-treated 

group. It is possible that at this time, HAI-producing B cells are not as frequent in DMN 

compared to IM treated animals. HAI is considered a correlate of protection for IM-administered 

TIV vaccines. Induction of lower HAI at early time points could suggest delayed vaccine efficacy 

if this assay was solely used as an efficacy marker. However, similar to intranasal live 

attenuated influenza vaccines, reduced or absent HAI may not correlate with disease 

susceptibility and detection of other immune mechanisms, including neutralizing antibodies, may 

be required to provide more appropriate correlates for vaccine efficacy in suitable pre-clinical 

and clinical studies, Further studies are required in a suitable influenza-primed animal model to 

determine if these TIV vaccine-loaded dissolvable microneedle patches can induce greater 

heterosubtypic protection compared to IM administration. We previously demonstrated that, 

unlike systemic immunization, silicon microneedle-mediated vaccination did not induce 

inflammatory responses at the site of immunization or in draining lymph nodes [19, 20]. We 

hypothesize that an increase in B cell diversity that are induced by vaccine-loaded DMN patches 

relates to differences in the cytokine environment that may be induced using DMN patches 

compared to IM vaccine administration. Further work is required to examine this hypothesis. 

Overall, our findings demonstrate that incorporation of a seasonal influenza vaccine into 

dissolvable microneedle patches significantly alters the phenotype of the humoral response 

compared to intramuscular delivery. This offers a novel method of inducing broad influenza-

specific immunity independently of adjuvant utilization.  

In summary, novel DMN fabrication methods were developed which overcome drawbacks of the 

current approaches as they offer simple and scalable production techniques that are designed 

for GMP-compliance. The described approach has the unique feature that heterogeneous arrays 

containing more than one type of microneedle on the same DMN patch may be easily prepared. 

Vaccines incorporated into DMN patches using these methods were significantly stabilized out of 
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cold chain and were delivered transcutaneoulsy. Significantly, a broader humoral response was 

induced using these dissolvable microneedle patches and significant vaccine stability was 

achieved. This study supports the further development of microneedle technology for vaccination 

purposes.   
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FIGURE LEGENDS 

Figure. 1. Schematic diagrams of dissolvable microneedle array fabrication processes. (a) 

Conventional fabrication process. (b) Novel fabrication process. Step A: Water was sprayed over a 

PDMS mold to fill the microneedle cavities. Step B: Excess water was removed from the surface 

using a flat blade. Step C: (i) The concentrated formulation was applied directly on top of 

microneedle cavities.  (ii) The drug solution in the upper formulation diffused and equilibrated in the 

microneedle mould as the result of gradient formed between highly concentrated formulation and 

water in the cavities. (iii) The drug solution dried. Step D: Flexible adhesive tape was (i) applied on 

top of the mold to adhere to needle bases and (ii) lifted giving an array of drug-filled DMN ready for 

application. (c) Drying of drug formulation dropped on PDMS mould. Formulation consisting of 45% 

trehalose (w/v) and methylene blue delivered on top of PDMS mould diffuses into the mould in 

approximately 5 min at ambient conditions. First picture (1 min) also shows that diffusion of 

formulation from upper bulb into microneedle cavity is complete even after 1 min (microneedle tips 

are blue confirming that diffusion equilibrated concentration in the bulb and microneedle cavity). (d) 

Incomplete microneedles formed if prefilling of 280 m tall microneedle cavities with water was 

omitted from fabrication procedure (D1-D2).  

Figure 2. Examples of dissolvable microneedle patches. Homogeneous microneedle array (a1) 

and individual needle (a2). Heterogeneous array containing microneedles made of two different 

formulations (b1) and magnified part (b2). Microneedle array with formulation concentrated in the 

needle tips with transparent PVP base (c1-c2). Fluorescent microscope image of microneedle array 

with 280 μm microneedles fabricated with 0.1 m OD red fluorescent microspheres and trehalose 

as excipient (d). Fluorescence is equally distributed throughout the needles thus proving that 

diffusion of large virus-size particles was equal to diffusion of much smaller excipient molecules. 

Equal diffusion rates ensure the needle homogeneity upon drying (d). 

Figure 3. Kinetics of dissolution of DMN with formulation concentrated in the microneedle 

tips. Arrays with 500 m tall needles were fabricated with tips made of trehalose with the addition of 
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Congo red dye and base made of PVP with the addition of methylene blue dye. Arrays were then 

applied onto cadaver pig skin and left for 1 s, 10 min and 60 min after which they were imaged using 

microscope. 

Figure 4. Skin-transfection using dissolvable microneedle patches with AdV-β-galactosidase or 

MVA β-galactosidase throughout the entire microneedle (a, b) or distributed in the tip only 

(c, d). Microneedle arrays with 280 μm long microneedles containing either AdV β-gal (a) or MVA 

β-gal (b) or 500 μm long microneedles (c, d) were applied onto freshly excised pig skin and 

later examined for β-galactosidase expression at 24 hours. 

Figure 5. Stability of AdV and MVA embedded in microneedle patches during 14 days at 

ambient temperature. AdHu5-mCherry (a) or MVA-RFP (b) were embedded in DMN made of 

trehalose (AdV) or trehalose/PVA (MVA) and left at ambient temperature for 14 days. Y-axis 

represents titer in log(PFU)eq units for AdV and MVA with error bars showing SD. 

Figure 6. One-year stability of influenza vaccine in microneedle patches.  Stability of HA 

antigen as assessed by content (a, b) and immunogenicity (c, d) when incorporated in DMN 

patches or as a liquid in pre-filled syringes, over time at ICH-recommended accelerated conditions 

(stability chamber set to 40°C, 75% RH). DMN patch composition was 1.5 µg or 0.3 µg HA in 11% 

(w/v) trehalose and 2.75% (w/v) PVA per dose or a full dose (15 µg) in liquid. (a) A/California/7/2009 

(H1N1) and (b) A/Perth/16/2009 (H3N2) HA content as assessed by SRID. Immunogenicity of 

influenza vaccine incorporated in DMN patches or in liquid vaccine to 3 months (left) or 1 year 

(right). (c) A/California/7/2009 (H1N1) and (d) A/Perth/16/2009 (H3N2) HA-specific serum IgG 

responses. BALB/c mice were immunized by the intramuscular route for the liquid vaccine or using 

TIV-loaded DMN patches. Single patches containing 1.5 µg HA in DMN patches (day 45, day 90) or 

0.3 µg HA (day 365) were applied to an ear of each mouse. Total IgG titers in blood were measured 

to recombinant HA at 4 weeks after immunization. * p , 0.05, ** p , 0.01, ***p , 0.001 compared to 
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liquid vaccine at the same time point by t-test. The median and interquartile range are represented 

by the bar and whisker plots, with individual responses (n = 6) shown. 

Figure 7 Anti-Hemagglutinin responses. (a) Serum IgG responses to hemagglutinin 

A/California/7/2009 pdm09 (H1N1) (left) and A/Victoria/210/2009 (H3N2) (right) responses after a 

single immunisation of mice on day 0 with 0.375 µg HA or 3 µg HA of TIV via DMN or IM routes.  

Median responses with interquartile range. *=p <0.05 **p<0.01***p<0.001 for 0.375 µg IM group 

compared to all other groups (n = 6 per group). (b) In a separate study, the durability of the anti-HA 

IgG response was assessed at 85 or 105 days after a single immunization with 3µg of each HA 

using DMN or the IM route. *=p <0.05 for DMN compared to IM at day 85 by t-test. (c) 

Hemagglutination inhibition (HI) titres at four and eight weeks post prime. HI titres against 

H1A/California/2009 (left) and H3 A/Victoria/207 (right) strains at 4 and 8 weeks post prime with a 

single immunisation of 3µg HA  in 4-6 week old female BALB/c Mice (n = 4 -5 group). Bars 

represent median values with interquartile range.  

Figure 8. TIV-loaded microneedle patches induce broadly neutralising antibodies. Pseuotyped 

neutralization assay to measure the neutralizing antibody response in mice immunized with TIV 

incorporated in DMN patches or administered by the IM route. The neutralizing antibody response in 

mice against (a) influenza group 1 viruses A/South Carolina/1/1918 (H1N1) and 

A/Vietnam/1203/2004 (H5N1); (b) HA from the group 2 virus A/Udorn/307/1972 (H3N2) HA-

pseudotyped lentivirus reporters after immunization with or 3 µg or 0.3 µg HA. (c) Neutralizing 

antibodies to the chimeric HA, with the responses against the other group 1 viruses (displayed in 

(A)) for comparison, at 28 or 56 days after a single immunization with 0.3 µg HA using DMN patches 

or the IM route . *=p <0.05 **p<0.01 for DMN compared to IM group for the same dose, by one-way 

ANOVA (n = 5 per group).  

Figure S1 Antigen stability post fabrication. Single radial immunodiffusion gels demonstrating 

that fabrication has no detectable effect on hemagglutinin A/California H1N1 (left) or A/Victoria 
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H3N2 (right). Individual samples were added neat (1.0) or diluted to 0.75, 0.5, 0.25 of the neat 

concentration, as indicated, in duplicate. Licensed trivalent influenza virus vaccine (Fluarix), was 

concentrated 7.9 fold prior to formulation (Fluarix conc. 7.9x) to ensure sufficient vaccine loading in 

patch. Reference antigen (Ref antigen) from NIBSC, dissolvable microneedle patches (P1-6) and 

liquid formulation used to fabricate DMN (Liq. Form) as well as concentrated vaccine were dissolved 

and diluted to yield a theoretical content of 3 μg hemagglutinin as the neat solution 

Table 1. Neutralising antibody responses to group 1 HA antigens. Neutralizing antibodies to the 

chimeric HA, with the responses against the other tested group 1 viruses for comparison, at 28 or 56 

days after a single immunization with 0.3 µg HA using DMN patches or the IM route. A response to 

the stalk region of A/South Carolina/1/1918 (H1N1) HA is deemed positive if the IC50 to the chimeric, 

H11/H1 head/stalk antigen is greater than that observed to the A/duck/Memphis/546/1974 (H11N9) 

HA. Shading highlights responses that are greater than the median response observed across all 

samples. *; indicates that the response to H11N9 is greater than the response H1N1 HA.   
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Table 1. Neutralising antibody responses to group 1 HA antigens 

 H11 

Chimeric H11-

Head /H1 Stalk  H1 H5 

Stalk 

Response?? Ranking 

Median IC50   55 293 39   

Day 28       

DMN#1 49 0 41 163 NO H5 > H1 

DMN#2 23 0 1036 471 NO H1 > H5 

DMN#3 40 0 68 9 NO Negative 

DMN#4 3 32 482 0 YES H1 >Stalk 

DMN#5 0 57 847 180 YES H1 >H5 > Stalk 

DMN#6 40 0 658 356 NO H1 > H5 

DMN#7 80 0 1105 1199 NO H1 = H5 

IM #1 1 77 293  YES H1 > Stalk 

IM #2 54 26 316 0 NO H1 

IM #3 45 15 216 25 NO weak H1 

IM #4 50 3 148 55 NO H5, weak H1 

IM #5 107 0 648  NO H1 

IM #6 47 0 191 1 NO weak H1 

Day 56       

DMN#1 56 300 37 39 * Stalk > H1 

DMN#2 98 33 1105 97 NO H1 > H5 

DMN#3 2 334 538 32 YES H1 > stalk, 

DMN#4 29 127 460 95 YES H1 > stalk > H5 

DMN#5 32 55 317 65 YES H1 > stalk, H5 

DMN#6 41 100 193 113 YES H1, stalk, H5 

IM #1 13 223 14 63 ??? Stalk > H5 

IM #2 2 467 37 8 YES Stalk  

IM #3 0 61 56 25 YES Stalk  

IM #4 0 475 144 20 YES Stalk  

IM #5 0 1248 526 24 YES Stalk > H1 

IM #6 157 617 66 7 * Stalk  
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Graphical Abstract 

 

Precisely dispensing formulation onto microneedle moulds permits the production of heterogeneous 

patches without wasted material. Influenza vaccine-loaded microneedle patches induce broader 

neutralising antibody responses compared to intramuscular injection. 
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