Skip to main content

COVID-19: Cardiac Arrest Management

  • Chapter
  • First Online:
Critical Care of COVID-19 in the Emergency Department

Abstract

Out-of-hospital cardiac arrest is more common during periods of high COVID-19 prevalence and case positivity. Prehospital care requires specific changes to the management of arrest as well as rescuer protective equipment. Policy development regarding duration of arrest treatment and transportation of patients with ongoing cardiac arrest is critical. Intra-arrest management also requires changes to contemporary arrest management, specifically regarding the consideration of additional etiology. Airway management needs special consideration, both to provide optimal oxygenation and to reduce viral aerosolization. Lastly, post-cardiac arrest care needs to incorporate COVID-19 specific treatment strategies with consideration of cardiac implications and drug interactions of virus treatment medications. In this chapter these recommendations, as well as literature evidence, are reviewed and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220. https://doi.org/10.1161/CIR.0b013e31823ac046.

    Article  PubMed  Google Scholar 

  2. Baldi E, Sechi GM, Mare C, et al. Out-of-hospital cardiac arrest during the Covid-19 outbreak in Italy. N Engl J Med. 2020;383(5):496–8. https://doi.org/10.1056/NEJMc2010418.

    Article  PubMed  Google Scholar 

  3. Baldi E, Sechi GM, Mare C, et al. COVID-19 kills at home: the close relationship between the epidemic and the increase of out-of-hospital cardiac arrests. Eur Heart J. 2020; https://doi.org/10.1093/eurheartj/ehaa508.

  4. Holland M, Burke J, Hulac S, et al. Excess cardiac arrest in the community during the COVID-19 pandemic. JACC Cardiovasc Interv. 2020;13(16):1968–9. https://doi.org/10.1016/j.jcin.2020.06.022.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sayre MR, Barnard LM, Counts CR, et al. Prevalence of COVID-19 in out-of-hospital cardiac arrest: implications for bystander CPR. Circulation. 2020; https://doi.org/10.1161/CIRCULATIONAHA.120.048951.

  6. Shao F, Xu S, Ma X, et al. In-hospital cardiac arrest outcomes among patients with COVID-19 pneumonia in Wuhan, China. Resuscitation. 2020;151:18–23. https://doi.org/10.1016/j.resuscitation.2020.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mottola FF, Verde N, Ricciolino R, et al. Cardiovascular system in COVID-19: simply a viewer or a leading actor? Life (Basel). 2020;10(9) https://doi.org/10.3390/life10090165.

  8. Boriani G, Palmisano P, Guerra F, et al. Impact of COVID-19 pandemic on the clinical activities related to arrhythmias and electrophysiology in Italy: results of a survey promoted by AIAC (Italian Association of Arrhythmology and Cardiac Pacing). Intern Emerg Med. 2020; https://doi.org/10.1007/s11739-020-02487-w.

  9. Nguyen LH, Drew DA, Graham MS, et al. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health. 2020;5(9):e475–83. https://doi.org/10.1016/S2468-2667(20)30164-X.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Levene LS, Coles B, Davies MJ, Hanif W, Zaccardi F, Khunti K. COVID-19 cumulative mortality rates for frontline healthcare staff in England. Br J Gen Pract. 2020;70(696):327–8. https://doi.org/10.3399/bjgp20X710837.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Couper K, Taylor-Phillips S, Grove A, et al. COVID-19 in cardiac arrest and infection risk to rescuers: a systematic review. Resuscitation. 2020;151:59–66. https://doi.org/10.1016/j.resuscitation.2020.04.022.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wei MT, de Vlas SJ, Yang Z, et al. The SARS outbreak in a general hospital in Tianjin, China: clinical aspects and risk factors for disease outcome. Tropical Med Int Health. 2009;14(Suppl 1):60–70. https://doi.org/10.1111/j.1365-3156.2009.02347.x.

    Article  Google Scholar 

  13. Edelson DP, Sasson C, Chan PS, et al. Interim guidance for basic and advanced life support in adults, children, and neonates with suspected or confirmed COVID-19: from the emergency cardiovascular care committee and get with the guidelines-resuscitation adult and pediatric task forces of the American Heart Association. Circulation. 2020;141(25):e933–43. https://doi.org/10.1161/CIRCULATIONAHA.120.047463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Craig S, Cubitt M, Jaison A, et al. Management of adult cardiac arrest in the COVID-19 era: consensus statement from the Australasian College for Emergency Medicine. Med J Aust. 2020;213(3):126–33. https://doi.org/10.5694/mja2.50699.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mahase E, Kmietowicz Z. Covid-19: doctors are told not to perform CPR on patients in cardiac arrest. BMJ. 2020;368:m1282. https://doi.org/10.1136/bmj.m1282.

    Article  PubMed  Google Scholar 

  16. Girotra S, Tang Y, Chan PS, Nallamothu BK, Investigators AHAGWTGR. Survival after In-hospital cardiac arrest in critically ill patients: implications for COVID-19 outbreak? Circ Cardiovasc Qual Outcomes. 2020;13(7):e006837. https://doi.org/10.1161/CIRCOUTCOMES.120.006837.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ran L, Chen X, Wang Y, Wu W, Zhang L, Tan X. Risk factors of healthcare workers with Corona Virus Disease 2019: a retrospective cohort study in a designated hospital of Wuhan in China. Clin Infect Dis. 2020; https://doi.org/10.1093/cid/ciaa287.

  18. Natalzia P, Murk W, Thompson JJ, et al. Evidence-based crisis standards of care for out-of-hospital cardiac arrests in a pandemic. Resuscitation. 2020; https://doi.org/10.1016/j.resuscitation.2020.07.021.

  19. Glober NK, Tainter CR, Abramson TM, Staats K, Gilbert G, Kim D. A simple decision rule predicts futile resuscitation of out-of-hospital cardiac arrest. Resuscitation. 2019;142:8–13. https://doi.org/10.1016/j.resuscitation.2019.06.011.

    Article  PubMed  Google Scholar 

  20. Grunau B, Scheuermeyer F, Kawano T, et al. North American validation of the Bokutoh criteria for withholding professional resuscitation in non-traumatic out-of-hospital cardiac arrest. Resuscitation. 2019;135:51–6. https://doi.org/10.1016/j.resuscitation.2019.01.008.

    Article  PubMed  Google Scholar 

  21. Glober NK, Lardaro T, Christopher S, Tainter CR, Weinstein E, Kim D. Validation of the NUE rule to predict futile resuscitation of out-of-hospital cardiac arrest. Prehosp Emerg Care. 2020:1–8. https://doi.org/10.1080/10903127.2020.1831666.

  22. Lederman Z. Family presence during cardiopulmonary resuscitation in the Covid-19 era. Resuscitation. 2020;151:137–8. https://doi.org/10.1016/j.resuscitation.2020.04.028.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shin H, Oh J, Lim TH, Kang H, Song Y, Lee S. Comparing the protective performances of 3 types of N95 filtering facepiece respirators during chest compressions: a randomized simulation study. Medicine (Baltimore). 2017;96(42):e8308. https://doi.org/10.1097/MD.0000000000008308.

    Article  Google Scholar 

  24. Bartoszko JJ, Farooqi MAM, Alhazzani W, Loeb M. Medical masks vs N95 respirators for preventing COVID-19 in healthcare workers: a systematic review and meta-analysis of randomized trials. Influenza Other Respir Viruses. 2020;14(4):365–73. https://doi.org/10.1111/irv.12745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Offeddu V, Yung CF, Low MSF, Tam CC. Effectiveness of masks and respirators against respiratory infections in healthcare workers: a systematic review and meta-analysis. Clin Infect Dis. 2017;65(11):1934–42. https://doi.org/10.1093/cid/cix681.

    Article  PubMed  Google Scholar 

  26. Holland M, Zaloga DJ, Friderici CS. COVID-19 personal protective equipment (PPE) for the emergency physician. Vis J Emerg Med. 2020;19:100740. https://doi.org/10.1016/j.visj.2020.100740.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973–87. https://doi.org/10.1016/S0140-6736(20)31142-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mousavi ES, Godri Pollitt KJ, Sherman J, Martinello RA. Performance analysis of portable HEPA filters and temporary plastic anterooms on the spread of surrogate coronavirus. Build Environ. 2020;183:107186. https://doi.org/10.1016/j.buildenv.2020.107186.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Christopherson DA, Yao WC, Lu M, Vijayakumar R, Sedaghat AR. High-efficiency particulate air filters in the era of COVID-19: function and efficacy. Otolaryngol Head Neck Surg. 2020;163(6):1153–5. https://doi.org/10.1177/0194599820941838.

    Article  PubMed  Google Scholar 

  30. Perkins GD, Morley PT, Nolan JP, et al. International Liaison Committee on Resuscitation: COVID-19 consensus on science, treatment recommendations and task force insights. Resuscitation. 2020;151:145–7. https://doi.org/10.1016/j.resuscitation.2020.04.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cook TM, El-Boghdadly K, McGuire B, McNarry AF, Patel A, Higgs A. Consensus guidelines for managing the airway in patients with COVID-19: guidelines from the Difficult Airway Society, the Association of Anaesthetists the Intensive Care Society, the Faculty of Intensive Care Medicine and the Royal College of Anaesthetists. Anaesthesia. 2020;75(6):785–99. https://doi.org/10.1111/anae.15054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alhazzani W, Møller MH, Arabi YM, et al. Surviving sepsis campaign: guidelines on the management of critically ill Adults with coronavirus disease 2019 (COVID-19). Crit Care Med. 2020;48(6):e440–69. https://doi.org/10.1097/CCM.0000000000004363.

    Article  CAS  PubMed  Google Scholar 

  33. De Jong A, Pardo E, Rolle A, Bodin-Lario S, Pouzeratte Y, Jaber S. Airway management for COVID-19: a move towards universal videolaryngoscope? Lancet Respir Med. 2020;8(6):555. https://doi.org/10.1016/S2213-2600(20)30221-6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sorbello M, Rosenblatt W, Hofmeyr R, Greif R, Urdaneta F. Aerosol boxes and barrier enclosures for airway management in COVID-19 patients: a scoping review and narrative synthesis. Br J Anaesth. 2020; https://doi.org/10.1016/j.bja.2020.08.038.

  35. Begley JL, Lavery KE, Nickson CP, Brewster DJ. The aerosol box for intubation in coronavirus disease 2019 patients: an in-situ simulation crossover study. Anaesthesia. 2020;75(8):1014–21. https://doi.org/10.1111/anae.15115.

    Article  CAS  PubMed  Google Scholar 

  36. Yang WS, Hou SW, Lee BC, et al. Taipei Azalea – Supraglottic airways (SGA) preassembled with high-efficiency particulate air (HEPA) filters to simplify prehospital airway management for patients with out-of-hospital cardiac arrests (OHCA) during Coronavirus Disease 2019 (COVID-19) pandemic. Resuscitation. 2020;151:3–5. https://doi.org/10.1016/j.resuscitation.2020.03.021.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lim WY, Wong P. Supraglottic airways in the management of COVID-19 patients. Anaesth Crit Care Pain Med. 2020;39(5):589–90. https://doi.org/10.1016/j.accpm.2020.06.012.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brewster DJ, Chrimes N, Do TB, et al. Consensus statement: Safe Airway Society principles of airway management and tracheal intubation specific to the COVID-19 adult patient group. Med J Aust. 2020;212(10):472–81. https://doi.org/10.5694/mja2.50598.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sorbello M, El-Boghdadly K, Di Giacinto I, et al. The Italian coronavirus disease 2019 outbreak: recommendations from clinical practice. Anaesthesia. 2020;75(6):724–32. https://doi.org/10.1111/anae.15049.

    Article  CAS  PubMed  Google Scholar 

  40. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–13. https://doi.org/10.1016/S0140-6736(20)30211-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Watchmaker JM, Goldman DT, Lee JY, et al. Increased incidence of acute pulmonary embolism in emergency department patients during the COVID-19 pandemic. Acad Emerg Med. 2020; https://doi.org/10.1111/acem.14148.

  42. Turagam MK, Musikantow D, Goldman ME, et al. Malignant arrhythmias in patients with COVID-19: incidence, mechanisms and outcomes. Circ Arrhythm Electrophysiol. 2020; https://doi.org/10.1161/CIRCEP.120.008920.

  43. Martinelli AW, Ingle T, Newman J, et al. COVID-19 and pneumothorax: a multicentre retrospective case series. Eur Respir J. 2020; https://doi.org/10.1183/13993003.02697-2020.

  44. Ruiz-Rodríguez JC, Chiscano-Camon L, Ruiz D, et al. Cardiac tamponade as a cause of cardiac arrest in severe COVID-19 pneumonia. Resuscitation. 2020;155:1–2. https://doi.org/10.1016/j.resuscitation.2020.07.008.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coronavirus Disease 2019 (COVID-19) treatment guidelines: care of critically ill patients with COVID-19. 2020.

    Google Scholar 

  46. Böttiger BW, Arntz HR, Chamberlain DA, et al. Thrombolysis during resuscitation for out-of-hospital cardiac arrest. N Engl J Med. 2008;359(25):2651–62. https://doi.org/10.1056/NEJMoa070570.

    Article  PubMed  Google Scholar 

  47. Mavraganis G, Aivalioti E, Chatzidou S, et al. Cardiac arrest and drug-related cardiac toxicity in the Covid-19 era. Epidemiology, pathophysiology and management. Food Chem Toxicol. 2020;145:111742. https://doi.org/10.1016/j.fct.2020.111742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Akhmerov A, Marbán E. COVID-19 and the heart. Circ Res. 2020;126(10):1443–55. https://doi.org/10.1161/CIRCRESAHA.120.317055.

    Article  CAS  PubMed  Google Scholar 

  49. Thapa SB, Kakar TS, Mayer C, Khanal D. Clinical outcomes of In-hospital cardiac arrest in COVID-19. JAMA Intern Med. 2020; https://doi.org/10.1001/jamainternmed.2020.4796.

  50. Gaspari R, Weekes A, Adhikari S, et al. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016;109:33–9. https://doi.org/10.1016/j.resuscitation.2016.09.018.

    Article  PubMed  Google Scholar 

  51. Bhatnagar V, Jinjil K, Dwivedi D, Verma R, Tandon U. Cardiopulmonary resuscitation: unusual techniques for unusual situations. J Emerg Trauma Shock. 2018;11(1):31–7. https://doi.org/10.4103/JETS.JETS_58_17.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Douma MJ, MacKenzie E, Loch T, et al. Prone cardiopulmonary resuscitation: a scoping and expanded grey literature review for the COVID-19 pandemic. Resuscitation. 2020;155:103–11. https://doi.org/10.1016/j.resuscitation.2020.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chivukula RR, Maley JH, Dudzinski DM, Hibbert K, Hardin CC. Evidence-based Management of the critically ill Adult with SARS-CoV-2 infection. J Intensive Care Med. 2021;36(1):18–41. https://doi.org/10.1177/0885066620969132.

    Article  PubMed  Google Scholar 

  54. Driver BE, Prekker ME, Kornas RL, Cales EK, Reardon RF. Flush rate oxygen for emergency airway preoxygenation. Ann Emerg Med. 2017;69(1):1–6. https://doi.org/10.1016/j.annemergmed.2016.06.018.

    Article  PubMed  Google Scholar 

  55. Ip M, Tang JW, Hui DS, et al. Airflow and droplet spreading around oxygen masks: a simulation model for infection control research. Am J Infect Control. 2007;35(10):684–9. https://doi.org/10.1016/j.ajic.2007.05.007.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Roberts BW, Kilgannon JH, Hunter BR, et al. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: prospective multicenter protocol-directed cohort study. Circulation. 2018;137(20):2114–24. https://doi.org/10.1161/CIRCULATIONAHA.117.032054.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Barrot L, Asfar P, Mauny F, et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med. 2020;382(11):999–1008. https://doi.org/10.1056/NEJMoa1916431.

    Article  CAS  PubMed  Google Scholar 

  58. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020;323(22):2329–30. https://doi.org/10.1001/jama.2020.6825.

    Article  PubMed  Google Scholar 

  59. Gattinoni L, Camporota L, Marini JJ. COVID-19 phenotypes: leading or misleading? Eur Respir J. 2020;56(2) https://doi.org/10.1183/13993003.02195-2020.

  60. Kang C, In YN, Park JS, et al. Impact of low and high partial pressure of carbon dioxide on neuron-specific enolase derived from serum and cerebrospinal fluid in patients who underwent targeted temperature management after out-of-hospital cardiac arrest: a retrospective study. Resuscitation. 2020;153:79–87. https://doi.org/10.1016/j.resuscitation.2020.05.050.

    Article  PubMed  Google Scholar 

  61. Woodward CW, Lambert J, Ortiz-Soriano V, et al. Fluid overload associates with major adverse kidney events in critically ill patients with acute kidney injury requiring continuous renal replacement therapy. Crit Care Med. 2019;47(9):e753–60. https://doi.org/10.1097/CCM.0000000000003862.

    Article  PubMed  Google Scholar 

  62. Lee J, de Louw E, Niemi M, et al. Association between fluid balance and survival in critically ill patients. J Intern Med. 2015;277(4):468–77. https://doi.org/10.1111/joim.12274.

    Article  CAS  PubMed  Google Scholar 

  63. Kilgannon JH, Roberts BW, Jones AE, et al. Arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest*. Crit Care Med. 2014;42(9):2083–91. https://doi.org/10.1097/CCM.0000000000000406.

    Article  PubMed  Google Scholar 

  64. Roberts BW, Kilgannon JH, Hunter BR, et al. Association between elevated mean arterial blood pressure and neurologic outcome after resuscitation from cardiac arrest: results from a multicenter prospective cohort study. Crit Care Med. 2019;47(1):93–100. https://doi.org/10.1097/CCM.0000000000003474.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jakkula P, Pettilä V, Skrifvars MB, et al. Targeting low-normal or high-normal mean arterial pressure after cardiac arrest and resuscitation: a randomised pilot trial. Intensive Care Med. 2018;44(12):2091–101. https://doi.org/10.1007/s00134-018-5446-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ameloot K, De Deyne C, Eertmans W, et al. Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the Neuroprotect post-cardiac arrest trial. Eur Heart J. 2019;40(22):1804–14. https://doi.org/10.1093/eurheartj/ehz120.

    Article  CAS  PubMed  Google Scholar 

  67. Sandroni C, D'Arrigo S, Nolan JP. Prognostication after cardiac arrest. Crit Care. 2018;22(1):150. https://doi.org/10.1186/s13054-018-2060-7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. François B, Cariou A, Clere-Jehl R, et al. Prevention of early ventilator-associated pneumonia after cardiac arrest. N Engl J Med. 2019;381(19):1831–42. https://doi.org/10.1056/NEJMoa1812379.

    Article  PubMed  Google Scholar 

  69. Hasan SS, Radford S, Kow CS, Zaidi STR. Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: a systematic review and meta-analysis. J Thromb Thrombolysis. 2020;50(4):814–21. https://doi.org/10.1007/s11239-020-02235-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020;382(24):2327–36. https://doi.org/10.1056/NEJMoa2007016.

    Article  CAS  PubMed  Google Scholar 

  71. Giustetto C, Di Monte F, Wolpert C, et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J. 2006;27(20):2440–7. https://doi.org/10.1093/eurheartj/ehl185.

    Article  PubMed  Google Scholar 

  72. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med. 2020; https://doi.org/10.1056/NEJMoa2007764.

  73. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with Covid-19 – preliminary report. N Engl J Med. 2020; https://doi.org/10.1056/NEJMoa2021436.

  74. Mansfield KE, Nitsch D, Smeeth L, Bhaskaran K, Tomlinson LA. Prescription of renin-angiotensin system blockers and risk of acute kidney injury: a population-based cohort study. BMJ Open. 2016;6(12):e012690. https://doi.org/10.1136/bmjopen-2016-012690.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Palevsky PM, Zhang JH, Seliger SL, Emanuele N, Fried LF, Study VN-D. Incidence, severity, and outcomes of AKI associated with dual renin-angiotensin system blockade. Clin J Am Soc Nephrol. 2016;11(11):1944–53. https://doi.org/10.2215/CJN.03470316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben K. Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carr, C.T., Becker, T.K. (2021). COVID-19: Cardiac Arrest Management. In: Shiber, J.R. (eds) Critical Care of COVID-19 in the Emergency Department. Springer, Cham. https://doi.org/10.1007/978-3-030-85636-6_8

Download citation

Publish with us

Policies and ethics