Skip to main content

Novel Cell-Based Therapeutics for Diseases of the Heart and Skeletal Muscle

  • Chapter
  • First Online:
Regenerative Rehabilitation

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 495 Accesses

Abstract

Diseases of the heart and skeletal muscle represent a major cause of mortality and morbidity in the United States. Many, if not most, are refractory to contemporary medical approaches, which rarely address the root pathogenesis. Regenerative medicine is a specialized field focused on replacing or repairing damaged tissue, which is otherwise incapable of self-healing. For more than four decades, stem and progenitor cells have been recognized for their potential as therapeutic products for regenerative medicine. Despite the long history of scientific inquiry, no cell therapy product has received regulatory approval for regenerative medicine applications in the United States. Recent initiatives focused on understanding the mechanistic basis of cell therapy have fundamentally redirected the trajectory of their development. In doing so, a class of extracellular vesicles called exosomes have emerged as next-generation therapeutic candidates for regenerative medicine. In this chapter, we discuss the difficulties with the commercial development of cell therapy products and the promise of exosomes as next-generation therapeutics. The field of regenerative medicine is ever-changing, and the latest technological advances continue to define our path forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar CA, Greising SM, Watts A, Goldman SM, Peragallo C, Zook C, Larouche J, Corona BT (2018) Multiscale analysis of a regenerative therapy for treatment of volumetric muscle loss injury. Cell Death Dis 4(1):1–11

    CAS  Google Scholar 

  • Akers JC, Ramakrishnan V, Yang I, Hua W, Mao Y, Carter BS, Chen CC (2016) Optimizing preservation of extracellular vesicular miRNAs derived from clinical cerebrospinal fluid. Cancer Biomark 17(2):125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhmerov A, Marbán E (2020) COVID-19 and the heart. Circ Res 126(10):1443–1455

    Article  CAS  PubMed  Google Scholar 

  • Al-Daccak R, Charron D (2015) Allogenic benefit in stem cell therapy: cardiac repair and regeneration. Tissue Antigens 86(3):155–162

    Article  CAS  PubMed  Google Scholar 

  • Aminzadeh MA, Rogers RG, Fournier M, Tobin RE, Guan X, Childers MK, Andres AM, Taylor DJ, Ibrahim A, Ding X, Torrente A, Goldhaber JI, Lewis MI, Gottlieb RA, Victor RA, Marbán E (2018) Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy. Stem Cell Rep 10(3):942–955

    Article  CAS  Google Scholar 

  • Basalay M, Yellon D, Davidson S (2020) Targeting myocardial ischaemic injury in the absence of reperfusion. Basic Res Cardiol 115(6):1–16

    Article  CAS  Google Scholar 

  • Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A (2008) Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 45(4):523–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776

    Google Scholar 

  • Berebichez-Fridman R, Montero-Olvera PR (2018) Sources and clinical applications of mesenchymal stem cells: state-of-the-art review. Sultan Qaboos Univ Med J 18(3):e264

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry SE, Liu J, Chaney EJ, Kaufman SJ (2007) Multipotential mesoangioblast stem cell therapy in the mdx/utrn-/-mouse model for Duchenne muscular dystrophy. Regen Med 2(3):275–288

    Article  CAS  PubMed  Google Scholar 

  • Biressi S, Filareto A, Rando TA (2020) Stem cell therapy for muscular dystrophies. J Clin Invest 130(11):5652–5664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, Case LE, Cripe L, Hadjiyannakis S, Olson AK (2018) Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol 17(4):347–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. The Lancet 378(9806):1847–1857

    Article  Google Scholar 

  • Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11(9):507–515

    Article  CAS  PubMed  Google Scholar 

  • Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32(6):670–679

    Article  PubMed  Google Scholar 

  • Borlaug BA, Redfield MM, Melenovsky V, Kane GC, Karon BL, Jacobsen SJ, Rodeheffer RJ (2013) Longitudinal changes in left ventricular stiffness: a community-based study. Circ Heart Fail 6(5):944–952

    Article  PubMed  Google Scholar 

  • Buddhe S, Cripe L, Friedland-Little J, Kertesz N, Eghtesady P, Finder J, Hor K, Judge DP, Kinnett K, McNally EM (2018) Cardiac management of the patient with Duchenne muscular dystrophy. Pediatrics 142(suppl 2):S72–S81

    Article  PubMed  Google Scholar 

  • Caldwell C, Mattey D, Weller R (1990) Role of the basement membrane in the regeneration of skeletal muscle. Neuropathol Appl Neurobiol 16(3):225–238

    Article  CAS  PubMed  Google Scholar 

  • Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marbán L, Marbán E (2017) Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 9(3):337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell A, Brieva T, Raviv L, Rowley J, Niss K, Brandwein H, Oh S, Karnieli O (2015) Concise review: process development considerations for cell therapy. Stem Cells Transl Med 4(10):1155–1163

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakravarty T, Henry TD, Kittleson M, Lima J, Siegel RJ, Slipczuk L, Pogoda JM, Smith RR, Malliaras K, Marbán L, Ascheim DD, Marbán E, Makkar RR (2020) Allogeneic cardiosphere-derived cells for the treatment of heart failure with reduced ejection fraction: results of the Dilated cardiomYopathy iNtervention with Allogeneic Myocardially-regeneratIve Cells (DYNAMIC) trial. EuroIntervention 16:e293–e300

    Article  PubMed  Google Scholar 

  • Cho JH, Zhang R, Kilfoil PJ, Gallet R, de Couto G, Bresee C, Goldhaber JI, Marbán E, Cingolani E (2017) Delayed repolarization underlies ventricular arrhythmias in rats with heart failure and preserved ejection fraction. Circulation 136(21):2037–2050

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho JH, Kilfoil PJ, Zhang R, Solymani RE, Bresee C, Kang EM, Luther K, Rogers RG, de Couto G, Goldhaber JI, Marbán E, Cingolani E (2018a) Reverse electrical remodeling in rats with heart failure and preserved ejection fraction. JCI Insight 3(19)

    Google Scholar 

  • Cho JH, Zhang R, Aynaszyan S, Holm K, Goldhaber JI, Marbán E, Cingolani E (2018b) Ventricular arrhythmias underlie sudden death in rats with heart failure and preserved ejection fraction. Circ Arrhythm Electrophysiol 11(8):e006452

    Article  PubMed  PubMed Central  Google Scholar 

  • Conlan RS, Pisano S, Oliveira MI, Ferrari M, Pinto IM (2017) Exosomes as reconfigurable therapeutic systems. Trends Mol Med 23(7):636–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connuck DM, Sleeper LA, Colan SD, Cox GF, Towbin JA, Lowe AM, Wilkinson JD, Orav EJ, Cuniberti L, Salbert BA (2008) Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry. Am Heart J 155(6):998–1005

    Article  PubMed  PubMed Central  Google Scholar 

  • Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, Noviello M, Roostalu U, Natali Sora MG, Scarlato M (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7(12):1513–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai A, Baspinar O, Yeşilyurt A, Sun E, Aydemir Çİ, Öztel ON, Capkan DU, Pinarli F, Agar A, Karaöz E (2018) Efficacy of stem cell therapy in ambulatory and nonambulatory children with Duchenne muscular dystrophy—phase I–II. Degener Neurol Neuromuscul Dis 8:63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawkins JF, Ehdaie A, Rogers R, Soetkamp D, Valle J, Holm K et al (2022) Biological substrate modification suppresses ventricular arrhythmias in a porcine model of chronic ischaemic cardiomyopathy. Eur Heart J

    Google Scholar 

  • De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers J-M, Luyten FP (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160(6):909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Couto G, Gallet R, Cambier L, Jaghatspanyan E, Makkar N, Dawkins JF, Berman BP, Marbán E (2017) Exosomal microRNA transfer into macrophages mediates cellular postconditioning. Circulation 136(2):200–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Manera J, Touvier T, Dellavalle A, Tonlorenzi R, Tedesco F, Messina G, Meregalli M, Navarro C, Perani L, Bonfanti C (2010) Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy. Cell Death Dis 1(8):e61–e61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding S, Wang F, Liu Y, Li S, Zhou G, Hu P (2017) Characterization and isolation of highly purified porcine satellite cells. Cell Death Dis 3(1):1–11

    CAS  Google Scholar 

  • Dodson BP, Levine AD (2015) Challenges in the translation and commercialization of cell therapies. BMC Biotechnol 15(1):1–15

    Article  CAS  Google Scholar 

  • Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M (2014) Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science 345(6199)

    Google Scholar 

  • Gallet R, de Couto G, Simsolo E, Valle J, Sun B, Liu W, Tseliou E, Zile MR, Marbán E (2016) Cardiosphere-derived cells reverse heart failure with preserved ejection fraction in rats by decreasing fibrosis and inflammation. JACC Basic Transl Sci 1(1):14–28

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallet R, Dawkins J, Valle J, Simsolo E, De Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith RR, Marbán L, Ghaleh B, Marbán E (2017) Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J 38(3):201–211

    CAS  PubMed  Google Scholar 

  • Gladden JD, Chaanine AH, Redfield MM (2018) Heart failure with preserved ejection fraction. Annu Rev Med 69:65–79

    Article  CAS  PubMed  Google Scholar 

  • Greising SM, Rivera JC, Goldman SM, Watts A, Aguilar CA, Corona BT (2017) Unwavering pathobiology of volumetric muscle loss injury. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  • Greising SM, Corona BT, McGann C, Frankum JK, Warren GL (2019) Therapeutic approaches for volumetric muscle loss injury: a systematic review and meta-analysis. Tissue Eng Part B Rev 25(6):510–525

    Article  PubMed  Google Scholar 

  • Gussoni E, Blau HM, Kunkel LM (1997) The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat Med 3(9):970–977

    Article  CAS  PubMed  Google Scholar 

  • Hare J, Traverse J, Henry T (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo controlled study of myoblast transplantation. Circulation 117:1189–1200

    Article  Google Scholar 

  • Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383(9932):1933–1943

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim A, Marbán E (2016) Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol 78:67–83

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim A, Cheng K, Marbán E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2(5):606–619

    Article  CAS  Google Scholar 

  • Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107(11):1395–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnieli O (2015) Cell therapy: early process development and optimization of the manufacturing process are critical to ensure viability of the product, quality, consistency and cost efficiency. J Commerc Biotechnol 21(1)

    Google Scholar 

  • Karpati G, Ajdukovic D, Arnold D, Gledhill RB, Guttmann R, Holland P, Koch PA, Shoubridge E, Spence D, Vanasse M (1993) Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol 34(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba CM, Gaiad TP, Morini AC (2008) Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: local or systemic? J Transl Med 6(1):1–13

    Article  CAS  Google Scholar 

  • Koh GY, Klug MG, Soonpaa MH, Field LJ (1993) Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 92(3):1548–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancet T (2019) Retraction—Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet (London, England) 393(10176):1084

    Article  Google Scholar 

  • Law PK, Goodwin TG, Wang MG (1988) Normal myoblast injections provide genetic treatment for murine dystrophy. Muscle Nerve 11(6):525–533

    Article  CAS  PubMed  Google Scholar 

  • Lepper C, Partridge TA, Fan C-M (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138(17):3639–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Cui K, Zhang B, Wang Z, Shen Y, Wang X, Zhang J, Tong F, Li S (2015) Transplantation of human umbilical cord-derived mesenchymal stems cells for the treatment of Becker muscular dystrophy in affected pedigree members. Int J Mol Med 35(4):1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yan X, Sun Z, Chen B, Han Q, Li J, Zhao RC (2007) Flk-1+ adipose-derived mesenchymal stem cells differentiate into skeletal muscle satellite cells and ameliorate muscular dystrophy in mdx mice. Stem Cells Dev 16(5):695–706

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Luo H, Fan L, Liu X, Gao C (2020) Heart failure with preserved ejection fraction: an update on pathophysiology, diagnosis, treatment, and prognosis. Braz J Med Biol Res 53(7)

    Google Scholar 

  • Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marbán L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marbán E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. The Lancet 379(9819):895–904

    Article  Google Scholar 

  • Marbán E, Liao K (2022) On the cellular origin of cardiosphere-derived cells (CDCs). Basic Res Cardiol 117(1):1–4

    Article  Google Scholar 

  • Makkar RR, Kereiakes DJ, Aguirre F, Kowalchuk G, Chakravarty T, Malliaras K, Francis GS, Povsic TJ, Schatz R, Traverse JH, Pogoda JM, Smith RR, Marbán L, Ascheim DD, Ostovaneh MR, Lima J, Demaria A, Marbán E, Henry TD (2020) Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. Eur Heart J 41(36):3451–3458

    Article  CAS  PubMed  Google Scholar 

  • Malliaras K, Marbán E (2011) Cardiac cell therapy: where we’ve been, where we are, and where we should be headed. Br Med Bull 98(1):161–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Malliaras K, Li T-S, Luthringer D, Terrovitis J, Cheng K, Chakravarty T, Galang G, Zhang Y, Schoenhoff F, Van Eyk J, Marbán L, Marbán E (2012) Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Marbán E (2018a) A mechanistic roadmap for the clinical application of cardiac cell therapies. Nature biomedical engineering 2(6):353–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Marbán E (2018b) The secret life of exosomes: what bees can teach us about next-generation therapeutics. J Am Coll Cardiol 71(2):193–200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marbán L, Rogy S, McDonald C, Eagle M, Finkel R, Tian C, Taylor M, Janas J, Harmelink M, Varadhachary A, Hor K, Mayer OH, Furlong P, Committee H-S (2020) HOPE-2 one-year results show clinically relevant improvements in upper limb & cardiac function in patients with later stage Duchenne muscular dystrophy. Neuromuscul Disord 30:S168–S169

    Google Scholar 

  • McDonald CM, Marbán E, Hendrix S, Hogan N, Smith RR, Eagle M et al (2022) Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 399(10329):1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333(13):832–838

    Article  CAS  PubMed  Google Scholar 

  • Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B (2006) Intracoronary bone marrow cell transfer after myocardial infarction. Circulation 113(10):1287–1294

    Article  PubMed  Google Scholar 

  • Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129(11):2773–2783

    Article  CAS  PubMed  Google Scholar 

  • Miyagawa S, Domae K, Yoshikawa Y, Fukushima S, Nakamura T, Saito A, Sakata Y, Hamada S, Toda K, Pak K (2017) Phase I clinical trial of autologous stem cell–sheet transplantation therapy for treating cardiomyopathy. J Am Heart Assoc 6(4):e003918

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori R, Kamei N, Okawa S, Nakabayashi A, Yokota K, Higashi Y, Ochi M (2015) Promotion of skeletal muscle repair in a rat skeletal muscle injury model by local injection of human adipose tissue-derived regenerative cells. J Tissue Eng Regen Med 9(10):1150–1160

    Article  CAS  PubMed  Google Scholar 

  • Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, De Ferranti S, Després J-P, Fullerton HJ (2016) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133(4):e38–e360

    Google Scholar 

  • Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  CAS  PubMed  Google Scholar 

  • Pantelic MN, Larkin LM (2018) Stem cells for skeletal muscle tissue engineering. Tissue Eng Part B Rev 24(5):373–391

    Article  PubMed  Google Scholar 

  • Partridge TA, Morgan J, Coulton G, Hoffman E, Kunkel L (1989) Conversion of mdx myofibres from dystrophin-negative to-positive by injection of normal myoblasts. Nature 337(6203):176–179

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81(4):1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, González-Juanatey JR, Harjola V-P, Jankowska EA (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200

    Article  PubMed  Google Scholar 

  • Psaltis P, Paton S, See F, Arthur A, Martin S, Itescu S, Worthley S, Gronthos S, Zannettino A (2010) Enrichment for STRO-1 expression enhances the cardiovascular paracrine activity of human bone marrow-derived mesenchymal cell populations. J Cell Physiol 223(2):530–540

    CAS  PubMed  Google Scholar 

  • Reich H, Tseliou E, de Couto G, Angert D, Valle J, Kubota Y, Luthringer D, Mirocha J, Sun B, Smith RR (2016) Repeated transplantation of allogeneic cardiosphere-derived cells boosts therapeutic benefits without immune sensitization in a rat model of myocardial infarction. J Heart Lung Transplant 35(11):1348–1357

    Article  PubMed  Google Scholar 

  • Rogers RG, de Couto G, Liu W, Sanchez L, Marbán E (2019a) Cardiosphere-derived cell exosomes modulate mdx macrophage phenotype and alter their secretome. FASEB J 33(S1):lb611–lb611

    Article  Google Scholar 

  • Rogers RG, Fournier M, Sanchez L, Ibrahim AG, Aminzadeh MA, Lewis MI, Marbán E (2019b) Disease-modifying bioactivity of intravenous cardiosphere-derived cells and exosomes in mdx mice. JCI Insight 4(7)

    Google Scholar 

  • Rogers RG, Ciullo A, Marbán E, Ibrahim AG (2020a) Extracellular vesicles as therapeutic agents for cardiac fibrosis. Front Physiol 11:479

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers RG, Fournier M, Lee Y, Jones K, Sanchez L, Marbán E (2020b) Repeated administration of cardiosphere-derived cells preserves exercise capacity and muscle function for at least one year in mdx mice. Neuromuscul Disord 30:S107–S108

    Article  Google Scholar 

  • Rogers RG, Li L, Peck K, Sanchez L, Liu W, Ciullo A, Alfaro J, Rannou A, Fournier M, Lee Y, Marbán E (2021) Cardiosphere-derived cells, with and without a biological scaffold, stimulate myogenesis and recovery of muscle function in mice with volumetric muscle loss. Biomaterials 274:120852

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MGC, Campbell KP (2003) Cell therapy of α-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud J-L, Galvez BG, Barthélémy I (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579

    Article  CAS  PubMed  Google Scholar 

  • Savarese G, Lund LH (2017) Global public health burden of heart failure. Card Fail Rev 3(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Schu S, Nosov M, O’Flynn L, Shaw G, Treacy O, Barry F, Murphy M, O’Brien T, Ritter T (2012) Immunogenicity of allogeneic mesenchymal stem cells. J Cell Mol Med 16(9):2094–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, Devore AD, Yancy CW, Fonarow GC (2017) Heart failure with preserved, borderline, and reduced ejection fraction: 5-year outcomes. J Am Coll Cardiol 70(20):2476–2486

    Article  PubMed  Google Scholar 

  • Shayan M, Huang NF (2020) Pre-clinical cell therapeutic approaches for repair of volumetric muscle loss. Bioengineering 7(3):97

    Article  CAS  PubMed Central  Google Scholar 

  • Skuk D, Tremblay JP (2014) Clarifying misconceptions about myoblast transplantation in myology. Mol Ther 22(5):897–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skuk D, Roy B, Goulet M, Chapdelaine P, Bouchard J-P, Roy R, Dugré FJ, Lachance J-G, Deschênes L, Senay H (2004) Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 9(3):475–482

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Goulet M, Roy B, Chapdelaine P, Bouchard J-P, Roy R, Dugré FJ, Sylvain M, Lachance J-G, Deschênes L (2006) Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 65(4):371–386

    Article  CAS  PubMed  Google Scholar 

  • Skuk D, Goulet M, Roy B, Piette V, Côté CH, Chapdelaine P, Hogrel J-Y, Paradis M, Bouchard J-P, Sylvain M (2007) First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 17(1):38–46

    Article  PubMed  Google Scholar 

  • Smith R, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908

    Article  PubMed  CAS  Google Scholar 

  • Smith RR, Barile L, Messina E, Marbán E (2008) Stem cells in the heart: what’s the buzz all about? Part 2: Arrhythmic risks and clinical studies. Heart Rhythm 5(6):880–887

    Article  PubMed  PubMed Central  Google Scholar 

  • Soni M, Ferrell B, Wikholm C, Wilson LT (2020) Stem cell therapies and treatment advances for heart failure with preserved ejection fraction. Georgetown Med Rev 4(1):12344

    Article  Google Scholar 

  • Sürder D, Manka R, Lo Cicero V, Moccetti T, Rufibach K, Soncin S, Turchetto L, Radrizzani M, Astori G, Schwitter J (2013) Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation 127(19):1968–1979

    Article  PubMed  Google Scholar 

  • Szymczak MM, Friedman RL, Uppoor R, Yacobi A (2011) Detection, measurement, and control in pharma manufacturing. Pharm Technol 35:70–76

    Google Scholar 

  • Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, Glower DD, Kraus WE (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4(8):929–933

    Article  CAS  PubMed  Google Scholar 

  • Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, Forder JR, Anderson RD, Hatzopoulos AK, Penn MS (2012) Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 308(22):2380–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin S-CJ, Middleton RC, Marbán E, Molkentin JD (2014) C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509(7500):337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieira N, Valadares M, Zucconi E, Secco M, Junior CB, Brandalise V, Assoni A, Gomes J, Landini V, Andrade T (2012) Human adipose-derived mesenchymal stromal cells injected systemically into GRMD dogs without immunosuppression are able to reach the host muscle and express human dystrophin. Cell Transplant 21(7):1407–1417

    Article  CAS  PubMed  Google Scholar 

  • Voronov R (1975) Experimental study of the regenerative potentialities of the cardiac and somatic musculatures. Arkh Anat Gistol Embriol 69(9):35–40

    CAS  PubMed  Google Scholar 

  • Wang L-T, Ting C-H, Yen M-L, Liu K-J, Sytwu H-K, Wu KK, Yen BL (2016) Human mesenchymal stem cells (MSCs) for treatment towards immune-and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 23(1):1–13

    Article  CAS  Google Scholar 

  • Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16):e147–e239

    Article  PubMed  Google Scholar 

  • Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol 70(6):776–803

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Marbán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rogers, R.G., Marbán, E. (2022). Novel Cell-Based Therapeutics for Diseases of the Heart and Skeletal Muscle. In: Greising, S.M., Call, J.A. (eds) Regenerative Rehabilitation. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-95884-8_7

Download citation

Publish with us

Policies and ethics