Skip to main content

Extracellular Matrix and Smooth Muscle Cells

  • Chapter
  • First Online:
Inflammation and Atherosclerosis

Abstract

The arterial wall is a highly organised structure of cells and extracellular matrix (ECM) (see review by Adizugel et al. [1]). The ECM is synthesized by the VSMCs within the arterial wall, which then interact with the ECM through cell-matrix contacts. Many different forms of ECM are present in the arterial wall including both collagenous and non-collagenous proteins. In the intima, endothelial cells sit upon a layer of basement membrane composed of laminin, nidogen, perlecan, fibronectin and type IV collagen. In the media, VSMCs are surrounded by basement membrane, which is in turn embedded in fibrillar collagens type I, III and V, collagen type XVIII, fibronectin, and glycoproteins including proteoglycans and cartilage oligomeric matrix protein (COMP, thrombospondin 5) [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adiguzel E, Ahmad PJ, Franco C, Bendeck MP (2009) Collagens in the progression and complications of atherosclerosis. Vasc Med 14(1):73–89

    PubMed  Google Scholar 

  2. Riessen R, Fenchel M, Chen H, Axel DI, Karsch KR, Lawler J (2001) Cartilage oligomeric matrix protein (thrombospondin-5) is expressed by human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 21(1):47–54

    PubMed  CAS  Google Scholar 

  3. Wang L, Zheng J, Du Y, Huang Y, Li J, Liu B et al (2010) Cartilage oligomeric matrix protein maintains the contractile phenotype of vascular smooth muscle cells by interacting with {alpha}7{beta}1 integrin. Circ Res 106(3):514–525

    PubMed  CAS  Google Scholar 

  4. Barnes MJ, Farndale RW (1999) Collagens and atherosclerosis. Exp Geront 34:513–525

    CAS  Google Scholar 

  5. Moiseeva EP (2001) Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 52:372–386

    PubMed  CAS  Google Scholar 

  6. Koutsouki E, Beeching CA, Slater SC, Blaschuk OW, Sala-Newby GB, George SJ (2005) N-cadherin-dependent cell-cell contacts promote human saphenous vein smooth muscle cell survival. Arterioscler Thromb Vasc Biol 25:982–988

    PubMed  CAS  Google Scholar 

  7. Owens GK, Kumar MS, Wamhoff BR (2003) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    Google Scholar 

  8. Rzucidlo EM, Martin KA, Powell RJ (2007) Regulation of vascular smooth muscle cell differentiation. J Vasc Surg 45:25A–32A

    Google Scholar 

  9. Williams KJ, Tabas I (1995) The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15(5):551–561

    PubMed  CAS  Google Scholar 

  10. Olsson U, Bondjers G, Camejo G (1999) Fatty acids modulate the composition of extracellular matrix in cultured human arterial smooth muscle cells by altering the expression of genes for proteoglycan core proteins. Diabetes 48(3):616–622

    PubMed  CAS  Google Scholar 

  11. Wight TN, Merrilees MJ (2004) Proteoglycans in atherosclerosis and restenosis: key roles for versican. Circ Res 94:1158–1167

    PubMed  CAS  Google Scholar 

  12. van der Wal AC, Becker AE, van der Loos CM, Das PK (1994) Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterised by an inflammatory process irrespective of the dominant plaque morphology. Circulation 89:36–44

    PubMed  Google Scholar 

  13. Martinez-Lemus LA, Wu X, Wilson E, Hill MA, Davis GE, Davis MJ et al (2003) Integrins as unique receptors for vascular control. J Vasc Res 40(3):211–233

    PubMed  CAS  Google Scholar 

  14. Kappert K, Blaschke F, Meehan WP, Kawano H, Grill M, Fleck E et al (2001) Integrins αvβ3 and αvβ5 mediate VSMC migration and are elevated during neointima formation in the rat aorta. Basic Res Cardiol 96:42–49

    PubMed  CAS  Google Scholar 

  15. Mawatari K, Liu B, Kent KC (2000) Activation of integrin receptors is required for growth factor-induced smooth muscle cell dysfunction. J Vasc Surg 31(2):375–381

    PubMed  CAS  Google Scholar 

  16. Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM (1995) Alpha(v)beta(3) Integrin expression in normal and atherosclerotic artery. Circ Res 77(6):1129–1135

    PubMed  CAS  Google Scholar 

  17. Chao JT, Meininger GA, Patterson JL, Jones SAL, Partridge CR, Neiger JD et al (2004) Regulation of alpha(7)-integrin expression in vascular smooth muscle by injury-induced atherosclerosis. Am J Physiol-Heart Circul Physiol 287(1):H381–H389

    CAS  Google Scholar 

  18. Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM (1998) NF-kappa B mediates alpha v beta 3 integrin-induced endothelial cell survival. J Cell Biol 141(4):1083–1093

    PubMed  CAS  Google Scholar 

  19. Klein S, de Fougerolles AR, Blaikie P, Khan L, Pepe A, Green CD et al (2002) Alpha 5 beta 1 integrin activates an NF-kappa B-dependent program of gene expression important for angiogenesis and inflammation. Mol Cell Biol 22(16):5912–5922

    PubMed  CAS  Google Scholar 

  20. Johnson P, Ruffell B (2009) CD44 and its role in inflammation and inflammatory diseases. Inflamm Aller Drug Targ 8(3):208–220

    CAS  Google Scholar 

  21. Foster LC, Arkonac BM, Sibinga NES, Shi CW, Perrella MA, Haber E (1998) Regulation of CD44 gene expression by the proinflammatory cytokine interleukin-1 beta in vascular smooth muscle cells. J Biol Chem 273(32):20341–20346

    PubMed  CAS  Google Scholar 

  22. Vendrov AE, Madamanchi NR, Hakim ZS, Rojas M, Runge MS (2006) Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis. Circ Res 98(10):1254–1263

    PubMed  CAS  Google Scholar 

  23. Vendrov AE, Madamanchi NR, Niu XL, Molnar KC, Runge M, Szyndralewiez C et al (2010) NADPH oxidases regulate cd44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis. J Biol Chem 285(34):26545–26557

    PubMed  CAS  Google Scholar 

  24. Krettek A, Sukhova GK, Schonbeck U, Libby P (2004) Enhanced expression of CD44 variants in human atheroma and abdominal aortic aneurysm: possible role for a feedback loop in endothelial cells. Am J Pathol 165(5):1571–1581

    PubMed  CAS  Google Scholar 

  25. Cuff CA, Kothapalli D, Azonobi I, Chun S, Zhang Y, Belkin R et al (2001) The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J Clin Invest 108:1031–1040

    PubMed  CAS  Google Scholar 

  26. Maier KG, Sadowitz B, Cullen S, Han X, Gahtan V (2009) Thrombospondin-1-induced vascular smooth muscle cell migration is dependent on the hyaluronic acid receptor CD44. Am J Surg 198(5):664–669

    PubMed  CAS  Google Scholar 

  27. Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13(1):35–48

    PubMed  CAS  Google Scholar 

  28. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  Google Scholar 

  29. Gerthoffer WT (2007) Mechanisms of vascular smooth muscle cell migration. Circ Res 100(5):607–621

    PubMed  CAS  Google Scholar 

  30. Barillari G, Albonici L, Incerpi S, Bogetto L, Pistritto G, Volpi A et al (2001) Inflammatory cytokines stimulate vascular smooth muscle cells locomotion and growth by enhancing alpha 5 beta 1 integrin expression and function. Atherosclerosis 154(2):377–385

    PubMed  CAS  Google Scholar 

  31. Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J (2007) TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74(2):196–206

    PubMed  CAS  Google Scholar 

  32. Yang SN, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ (2010) Transforming growth factor-β regulation of proteoglycan synthesis in vascular smooth muscle: contribution to lipid binding and accelerated atherosclerosis in diabetes. J Diabetes 2(4):233–242, epub 1 July 2010

    PubMed  CAS  Google Scholar 

  33. Amento EP, Eshani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle. Arterioscler Thromb 11:1223–1230

    PubMed  CAS  Google Scholar 

  34. Rauterberg J, Voss B, Pott G, Gerlach U (1981) Connective-tissue components of the normal and fibrotic liver. 1. Structure, local-distirbution and metabolism of connective-tissue components in the normal liver and changes in chronic liver-diseases. Klin Wochenschr 59(14):767–779

    PubMed  CAS  Google Scholar 

  35. Smith EB (1965) Influence of age and atherosclerosis on chemistry of aortic intima. 2. Collagen and mucopolysaccharides. J Atheroscler Res 5(2):241–248

    PubMed  CAS  Google Scholar 

  36. Koyama H, Raines EW, Bornfeldt KE, Roberts JM, Ross R (1996) Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of CDK2 inhibitors. Cell 87(6):1069–1078

    PubMed  CAS  Google Scholar 

  37. Bond M, Chase AJ, Baker AH, Newby AC (2001) Inhibition of transcription factor NF-kappa B reduces matrix metalloproteinase-1,-3 and-9 production by vascular smooth muscle cells. Cardiovasc Res 50(3):556–565

    PubMed  CAS  Google Scholar 

  38. Kanda S, Kuzuya M, Ramos MA, Koike T, Yoshino K, Ikeda S et al (2000) Matrix metalloproteinase and alpha v beta 3 integrin-dependent vascular smooth muscle cell invasion through a type I collagen lattice. Arterioscler Thromb Vasc Biol 20(4):998–1005

    PubMed  CAS  Google Scholar 

  39. Li SH, Chow LH, Pickering JG (2000) Cell surface-bound collagenase-1 and focal substrate degradation stimulate the rear release of motile vascular smooth muscle cells. J Biol Chem 275(45):35384–35392

    PubMed  CAS  Google Scholar 

  40. Carragher NO, Levkau B, Ross R, Raines EW (1999) Degraded collagen fragments promote rapid disassembly of smooth muscle focal adhesions that correlates with cleavage of pp 125(FAK), paxillin, and talin. J Cell Biol 147(3):619–629

    PubMed  CAS  Google Scholar 

  41. Jones PL, Jones FS, Zhou B, Rabinovitch M (1999) Induction of vascular smooth muscle cell tenascin-C gene expression by denatured type I collagen is dependent upon a beta 3 integrin-mediated mitogen-activated protein kinase pathway and a 122-base pair promoter element. J Cell Sci 112(4):435–445

    PubMed  CAS  Google Scholar 

  42. Orr AW, Lee MY, Lemmon JA, Yurdagul A, Gomez MF, Bortz PDS et al (2009) Molecular mechanisms of collagen isotype-specific modulation of smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 29(2):225–231

    PubMed  CAS  Google Scholar 

  43. Yamamoto M, Yamamoto K, Noumura T (1993) Type-I collagen promotes modulation of cultured rabbit arterial smooth muscle cells from a contractile to a synthetic phenotype. Exp Cell Res 204(1):121–129

    PubMed  CAS  Google Scholar 

  44. Minami T, Miura M, Aird WC, Kodama T (2006) Thrombin-induced autoinhibitory factor, down syndrome critical region-1, attenuates NFAT-dependent vascular cell adhesion molecule-1 expression and inflammation in the endothelium. J Biol Chem 281(29):20503–20520

    PubMed  CAS  Google Scholar 

  45. Nilsson LM, Sun ZW, Nilsson J, Nordstrom I, Chen YW, Molkentin JD et al (2007) Novel blocker of NFAT activation inhibits IL-6 production in human myometrial arteries and reduces vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol 292(3):C1167–C1178

    PubMed  CAS  Google Scholar 

  46. Heino J (2000) The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol 19(4):319–323

    PubMed  CAS  Google Scholar 

  47. Chung CH, Lin KT, Chang CH, Peng HC, Huang TF (2009) The integrin alpha(2)beta(1) agonist, aggretin, promotes proliferation and migration of VSMC through NF-kappa B translocation and PDGF production. Br J Pharmacol 156(5):846–856

    PubMed  CAS  Google Scholar 

  48. Skinner MP, Raines EW, Ross R (1994) Dynamic expression of alpha-1-beta-1 and alpha-2-beta-1 integrin receptors by human vascular smooth muscle cells – alpha-2-beta-1 integrin is required for chemotaxis across type-I collagen-coated membranes. Am J Pathol 145(5):1070–1081

    PubMed  CAS  Google Scholar 

  49. Okada Y, Katsuda S, Matsui Y, Watanabe H, Nakanishi I (1990) Collagen-synthesis by cultured arterial smooth muscle cells during spontaneous phenotypic modulation. Acta Pathol Jpn 40(3):157–164

    PubMed  CAS  Google Scholar 

  50. Okada Y, Katsuda S, Matsui Y, Nakanishi I (1992) The modulation of collagen synthesis in cultured arterial smooth muscle cells by platelet-derived growth factor. Cell Biol Int Rep 16(10):1015–1022

    PubMed  CAS  Google Scholar 

  51. Liu B, Itoh H, Louie O, Kubota K, Kadono T, Kent C (2004) The role of phospholipase C and phosphatidylinositol 3-kinase in vascular smooth muscle cell migration and proliferation. J Surg Res 120:256–265

    PubMed  CAS  Google Scholar 

  52. Rocnik EF, Chan BMC, Pickering JG (1998) Evidence for a role of collagen synthesis in arterial smooth muscle cell migration. J Clin Invest 101(9):1889–1898

    PubMed  CAS  Google Scholar 

  53. Bendeck MP, Regenass S, Tom WD, Giachelli CM, Schwartz SM, Hart C et al (1996) Differential expression of alpha(1) type VIII collagen in injured platelet-derived growth factor-BB-stimulated rat carotid arteries. Circ Res 79(3):524–531

    PubMed  CAS  Google Scholar 

  54. Sibinga NES, Foster LC, Hsieh CM, Perrella MA, Lee WS, Endege WO et al (1997) Collagen VIII is expressed by vascular smooth muscle cells in response to vascular injury. Circ Res 80(4):532–541

    PubMed  CAS  Google Scholar 

  55. Plenz GAM, Deng MC, Robenek H, Volker W (2003) Vascular collagens: spotlight on the role of type VIII collagen in atherogenesis. Atherosclerosis 166(1):1–11

    PubMed  CAS  Google Scholar 

  56. MacBeath JRE, Kielty CM, Shuttleworth CA (1996) Type VIII collagen is a product of vascular smooth-muscle cells in development and disease. Biochem J 319:993–998

    PubMed  CAS  Google Scholar 

  57. Yasuda O, Zhang SH, Miyamoto Y, Maeda N (2000) Differential expression of the alpha 1 type VIII collagen gene by smooth muscle cells from atherosclerotic plaques of apolipoprotein-E-deficient mice. J Vasc Res 37(3):158–169

    PubMed  CAS  Google Scholar 

  58. Sinha S, Kielty CM, Heagerty AM, Canfield AE, Shuttleworth CA (2001) Upregulation of collagen VIII following porcine coronary artery angioplasty is related to smooth muscle cell migration not angiogenesis. Int J Exp Pathol 82(5):295–302

    PubMed  CAS  Google Scholar 

  59. Hou G, Mulholland D, Gronska MA, Bendeck MP (2000) Type VIII collagen stimulates smooth muscle cell migration and matrix metalloproteinase synthesis after arterial injury. Am J Pathol 156:467–476

    PubMed  CAS  Google Scholar 

  60. Adiguzel E, Hou GP, Mulholland D, Hopfer U, Fukai N, Olsen B et al (2006) Migration and growth are attenuated in vascular smooth muscle cells with type VIII collagen-null alleles. Arterioscler Thromb Vasc Biol 26(1):56–61

    PubMed  CAS  Google Scholar 

  61. Hou G, Vogel WF, Bendeck MP (2002) Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metallproteinase expression. Circ Res 90:1147–1149

    PubMed  CAS  Google Scholar 

  62. Franco C, Ahmad PJ, Hou G, Wong E, Bendeck MP (2010) Increased cell and matrix accumulation during atherogenesis in mice with vessel wall-specific deletion of discoidin domain receptor 1. Circ Res 106(11):1775–1783

    PubMed  CAS  Google Scholar 

  63. Franco C, Hou GP, Ahmad PJ, Fu EYK, Koh L, Vogel WF et al (2008) Discoidin domain receptor 1 (Ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. Circ Res 102(10):1202–1211

    PubMed  CAS  Google Scholar 

  64. Stern R, Asari AA, Sugahara KN (2006) Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85(8):699–715

    PubMed  CAS  Google Scholar 

  65. Kothapalli D, Zhao L, Hawthorne E, Cheng Y, Lee E, Puré E et al (2007) Hyaluronan and CD44 antagonize mitogen-dependent cyclin D1 expression in mesenchymal cells. J Cell Biol 176:535–544

    PubMed  CAS  Google Scholar 

  66. Turley E, Noble P, Bourguignon L (2001) Signaling properties of hyaluronan receptors. J Biol Chem 277:4589–4592

    PubMed  Google Scholar 

  67. Riessen R, Wight TN, Pastore C, Henley C, Isner JM (1996) Distribution of hyaluronan during extracellular matrix remodeling in human restenotic arteries and balloon-injured rat carotid arteries. Circulation 93(6):1141–1147

    PubMed  CAS  Google Scholar 

  68. Evanko SP, Angello JC, Wight TN (1999) Formation of hyaluronan- and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 19:1004–1013

    PubMed  CAS  Google Scholar 

  69. Vigetti D, Viola M, Karousou E, Rizzi M, Moretto P, Genasetti A et al (2008) Hyaluronan-CD44-ERK1/2 regulate human aortic smooth muscle cell motility during aging. J Biol Chem 283:4445–4458

    Google Scholar 

  70. Wight T (2008) Arterial remodeling in vascular disease: a key role for hyaluronan and versican. Front Biosci 13:4933–4937

    PubMed  CAS  Google Scholar 

  71. Jarvelainen H, Sainio A, Koulu M, Wight T, Penttinen R (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61:198–223

    PubMed  CAS  Google Scholar 

  72. Chai S, Chai Q, Danielsen CC, Hjorth P, Nyengaard JR, Ledet T et al (2005) Overexpression of hyaluronan in the tunica media promotes the development of atherosclerosis. Circ Res 96(5):583–591

    PubMed  CAS  Google Scholar 

  73. Reitsma S, Slaaf D, Vink H, van Zandvoort M, oude Egbrink Mirjam (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    PubMed  CAS  Google Scholar 

  74. Nagy N, Freudenberger T, Melchior-Becker A, Rock K, ter Braak M, Jastrow H et al (2010) Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis. Circulation 122(22):2313–2322

    PubMed  CAS  Google Scholar 

  75. Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K (2007) Early human atherosclerosis – accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 27(5):1159–1165

    PubMed  CAS  Google Scholar 

  76. Little PJ, Tannock L, Olin KL, Chait A, Wight TN (2002) Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-beta 1 exhibit increased binding to LDLs. Arterioscler Thromb Vasc Biol 22(1):55–60

    PubMed  CAS  Google Scholar 

  77. Maziere C, Gomila C, Maziere JC (2010) Oxidized low-density lipoprotein increases osteopontin expression by generation of oxidative stress. Free Radic Biol Med 48(10):1382–1387

    PubMed  CAS  Google Scholar 

  78. Molossi S, Clausell N, Rabinovitch M (1995) Reciprocal induction of tumor-necrosis-factor-alpha and interleukin-1-beta activity mediates fibronectin synthesis in coronary-artery smooth muscle cells. J Cell Physiol 163(1):19–29

    PubMed  CAS  Google Scholar 

  79. Qwarnstrom EE, Ostberg CO, Turk GL, Richardson CA, Bomsztyk K (1994) Fibronectin attachment activates the NF-kappa-B P50/P65 heterodimer in fibroblasts and smooth muscle cells. J Biol Chem 269(49):30765–30768

    PubMed  CAS  Google Scholar 

  80. Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14(5):617–623

    PubMed  CAS  Google Scholar 

  81. Evanko SP, Johnson PY, Braun KR, Underhill CB, Dudhia J, Wight TN (2001) Platelet-derived growth factor stimulates the formation of Versican-Hyaluronan aggregates and pericellular matrix expansion in arterial smooth muscle cells. Arch Biochem Biophys 394(1):29–38

    PubMed  CAS  Google Scholar 

  82. Ostberg CO, Zhu P, Wight TN, Qwarnstrom EE (1995) Fibronectin attachment is permissive for IL-1 mediated gene regulation. FEBS Lett 367(1):93–97

    PubMed  CAS  Google Scholar 

  83. Schonherr E, Kinsella MG, Wight TN (1997) Genistein selectively inhibits platelet-derived growth factor-stimulated versican biosynthesis in monkey arterial smooth muscle cells. Arch Biochem Biophys 339(2):353–361

    PubMed  CAS  Google Scholar 

  84. Lemire JM, Chan CK, Bressler S, Miller J, LeBaron RG, Wight TN (2007) Interleukin-1 beta selectively decreases the synthesis of versican by arterial smooth muscle cells. J Cell Biochem 101(3):753–766

    PubMed  CAS  Google Scholar 

  85. Lemire JM, Potter-Perigo S, Hall KL, Wight TN, Schwartz SM (1996) Distinct rat aortic smooth muscle cells differ in versican/PG-M expression. Arterioscler Thromb Vasc Biol 16:821–829

    PubMed  CAS  Google Scholar 

  86. Ismail NAE, Alavi MZ, Moore S (1994) Lipoprotein-proteoglycan complexes from injured rabbit aortas accelerate lipoprotein uptake by arterial smooth muscle cells. Atherosclerosis 105(1):79–87

    PubMed  CAS  Google Scholar 

  87. O'Brien KD, Olin KL, Alpers CE, Chiu W, Ferguson M, Hudkins K et al (1998) Comparison of apolipoprotein and proteoglycan deposits in human coronary atherosclerotic plaques: colocalization of biglycan with apolipoproteins. Circulation 98(6):519–527

    PubMed  Google Scholar 

  88. Kunjathoor VV, Chiu DS, O'Brien KD, LeBoeuf RC (2002) Accumulation of biglycan and perlecan, but not versican, in lesions of murine models of atherosclerosis. Arterioscler Thromb Vasc Biol 22(3):462–468

    PubMed  CAS  Google Scholar 

  89. Gardais A, Picard J, Hermelin B (1973) Glycosaminoglycan (GAG) distribution in aortic wall from five species. Comp Biochem Physiol Part B: Comp Biochem 44(2):507–510, IN5-IN8, 11–15

    CAS  Google Scholar 

  90. Strom A, Olin AI, Aspberg A, Hultgardh-Nilsson A (2006) Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration. Cardiovasc Res 69(3):755–763

    PubMed  Google Scholar 

  91. Strom A, Ahlqvist E, Franzen A, Heinegard D, Huitgardh-Nilsson A (2004) Extracellular matrix components in atherosclerotic arteries of Apo E/LDL receptor deficient mice: an immunohistochemical study. Histol Histopath 19(2):337–347

    CAS  Google Scholar 

  92. Scatena M, Liaw L, Giachelli CM (2007) Osteopontin – a multifunctional molecule regulating chronic inflammation and vascular disease. Arterioscler Thromb Vasc Biol 27(11):2302–2309

    PubMed  CAS  Google Scholar 

  93. Ohmori R, Momiyama Y, Taniguchi H, Takahashi R, Kusuhara M, Nakamura H et al (2003) Plasma osteopontin levels are associated with the presence and extent of coronary artery disease. Atherosclerosis 170(2):333–337

    PubMed  CAS  Google Scholar 

  94. Kato R, Momiyama Y, Ohmori R, Tanaka N, Taniguchi H, Arakawa K et al (2009) Prognostic significance of plasma osteopontin levels in patients undergoing percutaneous coronary intervention. Circ J 73(1):152–157

    PubMed  CAS  Google Scholar 

  95. Strom A, Franzen A, Wangnerud C, Knutsson AK, Heinegard D, Hultgardh-Nilsson A (2004) Altered vascular remodeling in osteopontin-deficient atherosclerotic mice. J Vasc Res 41(4):314–322

    PubMed  Google Scholar 

  96. Matsui Y, Rittling SR, Okamoto H, Inobe M, Jia N, Shimizu T et al (2003) Osteopontin deficiency attenuates atherosclerosis in female apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 23(6):1029–1034

    PubMed  CAS  Google Scholar 

  97. Chiba S, Okamoto H, Kon S, Kimura C, Murakami M, Inobe M et al (2002) Development of atherosclerosis in osteopontin transgenic mice. Heart Vessels 16(3):111–117

    PubMed  Google Scholar 

  98. Yin BL, Hao H, Wang YY, Jiang YJ, Xue S (2009) Downregulating osteopontin reduces angiotensin II-induced inflammatory activation in vascular smooth muscle cells. Inflamm Res 58(2):67–73

    PubMed  CAS  Google Scholar 

  99. Sun JZ, Xu YC, Dai Z, Sun YL (2009) Intermittent high glucose enhances proliferation of vascular smooth muscle cells by upregulating osteopontin. Mol Cell Endocrinol 313(1–2):64–69

    PubMed  CAS  Google Scholar 

  100. Shimizu-Hirota R, Sasamura H, Kuroda M, Kobayashi E, Hayashi M, Saruta T (2004) Extracellular matrix glycoprotein biglycan enhances vascular smooth muscle cell proliferation and migration. Circ Res 94:1067–1074

    PubMed  CAS  Google Scholar 

  101. Riessen R, Isner JM, Blessing E, Loushin C, Nikol S, Wight TN (1994) Regional differences in the distribution of the proteoglycans biglycan and decorin in the extracellular matrix of atherosclerotic and restenotic human coronary arteries. Am J Pathol 144(5):962–974

    PubMed  CAS  Google Scholar 

  102. Camejo G, Hurt-Camejo E, Wiklund O, Bondjers G (1998) Association of apo B lipoproteins with arterial proteoglycans: Pathological significance and molecular basis. Atherosclerosis 139:205–222

    PubMed  CAS  Google Scholar 

  103. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature Cell Biol 147:750–754

    Google Scholar 

  104. Talusan P, Bedri S, Yang SP, Kattapuram T, Silva N, Roughley PJ et al (2005) Analysis of intimal proteoglycans in atherosclerosis-prone and atherosclerosis-resistant human arteries by mass spectrometry. Mol Cell Proteomics 4(9):1350–1357

    PubMed  CAS  Google Scholar 

  105. Onda M, Ishiwata T, Kawahara K, Wang RJ, Naito Z, Sugisaki Y (2002) Expression of lumican in thickened intima and smooth muscle cells in human coronary atherosclerosis. Exp Mol Pathol 72(2):142–149

    PubMed  CAS  Google Scholar 

  106. Al Haj Zen A, Caligiuri G, Sainz J, Lemitre M, Demerens C, Lafont A (2006) Decorin overexpression reduces atherosclerosis development in apolipoprotein E-deficient mice. Atherosclerosis 187(1):31–39

    PubMed  Google Scholar 

  107. Nikkari S, Jarvelainen H, Wight T, Ferguson M, Clowes A (1994) Smooth muscle cell expression of extracellular genes after arterial injury. Am J Pathol 144(6):1348–1356

    PubMed  CAS  Google Scholar 

  108. Tran PK, Agardh HE, Tran-Lundmark K, Ekstrand J, Roy J, Henderson B et al (2007) Reduced perlecan expression and accumulation in human carotid atherosclerotic lesions. Atherosclerosis 190(2):264–270

    PubMed  CAS  Google Scholar 

  109. Clowes AW, Clowes MM (1989) Inhibition by heparin of smooth muscle hyperplasia. J Vasc Surg 10(5):589–591

    Google Scholar 

  110. Nugent MA, Karnovsky MJ, Edelman ER (1993) Vascular cell-derived heparan sulfate shows coupled inhibition of basic fibroblast growth factor binding and mitogenesis in vascular smooth muscle cells. Circ Res 73:1051–1060

    PubMed  CAS  Google Scholar 

  111. Forsten KE, Courant NA, Nugent MA (1997) Endothelial proteoglycans inhibit bFGF binding and mitogenesis. J Cell Physiol 172(2):209–220

    PubMed  CAS  Google Scholar 

  112. Dowd CJ, Cooney CL, Nugent MA (1999) Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J Biol Chem 274(8):5236–5244

    PubMed  CAS  Google Scholar 

  113. Tran PK, Tran-Lundmark K, Soininen R, Tryggvason K, Thyberg J, Hedin U (2004) Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ Res 94(4):550–558

    PubMed  CAS  Google Scholar 

  114. Tran-Lundmark K, Tran PK, Paulsson-Berne G, Friden V, Soininen R, Tryggvason K et al (2008) Heparan sulfate in perlecan promotes mouse atherosclerosis – roles in lipid permeability, lipid retention, and smooth muscle cell proliferation. Circ Res 103(1):43–52

    PubMed  CAS  Google Scholar 

  115. Bornstein P (2001) Thrombospondins as matricellular modulators of cell function. J Clin Invest 107(8):929–934

    PubMed  CAS  Google Scholar 

  116. Maier KG, Han X, Sadowitz B, Gentile KL, Middleton FA, Gahtan V (2010) Thrombospondin-1: a proatherosclerotic protein augmented by hyperglycemia. J Vasc Surg 51(5):1238–1247

    PubMed  Google Scholar 

  117. Okamoto M, Ono M, Uchiumi T, Ueno H, Kohno K, Sugimachi K et al (2002) Up-regulation of thrombospondin-1 gene by epidermal growth factor and transforming growth factor beta in human cancer cells – transcriptional activation and messenger RNA stabilization. Biochim Biophys Acta-Gene Struct Expr 1574(1):24–34

    CAS  Google Scholar 

  118. Chen DH, Asahara T, Krasinski K, Witzenbichler B, Yang JH, Magner M et al (1999) Antibody blockade of thrombospondin accelerates reendothelialization and reduces neointima formation in balloon-injured rat carotid artery. Circulation 100(8):849–854

    PubMed  CAS  Google Scholar 

  119. Wang XJ, Maier K, Fuse S, Willis AI, Olson E, Nesselroth S et al (2008) Thrombospondin-1-induced migration is functionally dependent upon focal adhesion kinase. Vasc Endovasc Surg 42(3):256–262

    Google Scholar 

  120. Willis AI, Fuse S, Wang XJ, Chen E, Tuszynski GP, Sumpio BE et al (2000) Inhibition of phosphatidylinositol 3-kinase and protein kinase C attenuates extracellular matrix protein-induced vascular smooth muscle cell chemotaxis. J Vasc Surg 31(6):1160–1166

    PubMed  CAS  Google Scholar 

  121. Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu QB et al (2009) ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res 104(5):688–698

    PubMed  CAS  Google Scholar 

  122. Newby AC (2005) Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 85(1):1–31

    PubMed  CAS  Google Scholar 

  123. Newby AC (2006) Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 69(3):614

    PubMed  CAS  Google Scholar 

  124. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P et al (1997) Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet 17:439–444

    PubMed  CAS  Google Scholar 

  125. Galis ZS, Muszynski M, Sukhova GK, Simon-Morissey E, Unemori EN, Lark MW et al (1994) Cytokine-stimulated human vascular smooth muscle synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75:181–189

    PubMed  CAS  Google Scholar 

  126. Bond M, Fabunmi RP, Baker AH, Newby AC (1998) Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-κB. FEBS Lett 435:29–34

    PubMed  CAS  Google Scholar 

  127. Fabunmi RP, Baker AH, Murray EJ, Booth RFG, Newby AC (1996) Divergent regulation by growth factors and cytokines of 95 kDa and 72 kDa gelatinases and tissue inhibitors of metalloproteinases-1,-2 and −3 in rabbit aortic smooth muscle cells. Biochem J 315(Part 1):335–342

    PubMed  CAS  Google Scholar 

  128. George SJ (1998) Tissue inhibitors of metalloproteinases and metalloproteinases in atherosclerosis. Curr Opin Lipidol 9:413–423

    PubMed  CAS  Google Scholar 

  129. George SJ (2000) Therapeutic potential of matrix metalloproteinase inhibitors in atherosclerosis. Expert Opin Invest Drugs 9(5):993–1007

    CAS  Google Scholar 

  130. Williams H, Johnson J, Jackson C, White S, George S (2010) MMP-7 mediates cleavage of N-cadherin and promotes smooth muscle cell apoptosis. Cardiovasc Res 87:137–146, epub

    PubMed  CAS  Google Scholar 

  131. Newby AC (2008) Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability. Arterioscler Thromb Vasc Biol 28(12):2108–2114

    PubMed  CAS  Google Scholar 

  132. Rekhter MD (1999) Collagen synthesis in atherosclerosis: too much and not enough. Cardiovasc Res 41:376–384

    PubMed  CAS  Google Scholar 

  133. Rekter MD, Hicks GW, Brammer DW, Hallak H, Kindt E, Chen J et al (2000) Hypercholesterolemia causes mechanical weakening of rabbit atheroma. Local collagen loss as a prerequisite of plaque rupture. Circ Res 86:101–108

    Google Scholar 

  134. Johnson JL (2007) Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 5(2):265–282

    PubMed  CAS  Google Scholar 

  135. Back M, Ketelhuth DFJ, Agewall S (2010) Matrix metalloproteinases in atherothrombosis. Prog Cardiovasc Dis 52(5):410–428

    PubMed  Google Scholar 

  136. Johnson JL, George SJ, Newby AC, Jackson CL (2005) Divergent effects of matrix metalloproteinases 3, 7, 9, and 12 on atherosclerotic plaque stability in mouse brachiocephalic arteries. Proc Natl Acad Sci USA 102(43):15575–15580

    PubMed  CAS  Google Scholar 

  137. Salter RC, Ashlin TG, Kwan APL, Ramji DP (2010) ADAMTS proteases: key roles in atherosclerosis? J Mol Med 88:1203–1211, epub 22 July 2010

    PubMed  CAS  Google Scholar 

  138. Wagsater D, Bjork H, Zhu C, Bjorkegren J, Valen G, Hamsten A et al (2008) ADAMTS-4 and −8 are inflammatory regulated enzymes expressed in macrophage-rich areas of human atherosclerotic plaques. Atherosclerosis 196:514–522

    PubMed  Google Scholar 

  139. Jonnsson-Rylander AC, Nilsson T, Fritsche-Danielson R, Hammarstrom A, Behrendt M, Andersson JO et al (2005) Role of ADAMTS-1 in atherosclerosis – remodeling of carotid artery, immunohistochemistry, and proteolysis of versican. Arterioscler Thromb Vasc Biol 25(1):180–185

    Google Scholar 

  140. Baker AB, Chatzizisis YS, Beigel R, Jonas M, Stone BV, Coskun AU et al (2010) Regulation of heparanase expression in coronary artery disease in diabetic, hyperlipidemic swine. Atherosclerosis 213:436–442

    PubMed  CAS  Google Scholar 

  141. Cain SA, Baldock C, Gallagher J, Morgan A, Bax DV, Weiss AS et al (2005) Fibrillin-1 interactions with heparin – implications for microfibril and elastic fiber assembly. J Biol Chem 280(34):30526–30537

    PubMed  CAS  Google Scholar 

  142. Munesue S, Yoshitomi Y, Kusano Y, Koyama Y, Nishiyama A, Nakanishi H et al (2007) A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J Biol Chem 282(38):28164–28174

    PubMed  CAS  Google Scholar 

  143. Fitzgerald M, Hayward IP, Thomas AC, Campbell GR, Campbell JH (1999) Matrix metalloproteinases can facilitate the heparanase-induced promotion of phenotypic change in vascular smooth muscle cells. Atherosclerosis 145(1):97–106

    PubMed  CAS  Google Scholar 

  144. Steins MB, Padró T, Li C-X, Mesters RM, Ostermann H, Hammel D et al (1999) Overexpression of tissue-type plasminogen activator in atherosclerotic human coronary arteries. Atherosclerosis 145(1):173–180

    PubMed  CAS  Google Scholar 

  145. Xiao Q, Danton MJS, Witte DP, Kowala MC, Valentine MT, Bugge TH et al (1997) Plasminogen deficiency accelerates vessel wall disease in mice predisposed to atherosclerosis. Proc Natl Acad Sci USA 94(19):10335–10340

    PubMed  CAS  Google Scholar 

  146. Rezaee F, Gijbels M, Offerman E, Verheijen J (2003) Genetic deletion of tissue-type plasminogen activator (t-PA) in apoE3-Leiden mice reduces progression of cholesterol-induced atherosclerosis. Thromb Haemost 90(4):710–716

    PubMed  CAS  Google Scholar 

  147. Lutgens SPM, Cleutjens K, Daemen M, Heeneman S (2007) Cathepsin cysteine proteases in cardiovascular disease. FASEB J 21:3029–3041

    PubMed  CAS  Google Scholar 

  148. Liu JA, Sukhova GK, Sun JS, Xu WH, Libby P, Shi GP (2004) Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 24(8):1359–1366

    PubMed  CAS  Google Scholar 

  149. Chen J, Tung CH, Mahmood U, Ntziachristos V, Gyurko R, Fishman MC et al (2002) In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105(23):2766–2771

    PubMed  Google Scholar 

  150. Oorni K, Sneck M, Bromme D, Pentikainen MO, Lindstedt KA, Mayranpaa M et al (2004) Cysteine protease cathepsin F is expressed in human atherosclerotic lesions, is secreted by cultured macrophages, and modifies low density lipoprotein particles in vitro. J Biol Chem 279(33):34776–34784

    PubMed  Google Scholar 

  151. Liu J, Sukhova GK, Yang JT, Sun J, Ma L, Ren A et al (2006) Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis 184(2):302–311

    PubMed  CAS  Google Scholar 

  152. Lutgens E, Lutgens SP, Faber BC, Heeneman S, Gijbels MM, de Winther MP et al (2006) Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation 113(1):98–107

    PubMed  CAS  Google Scholar 

  153. Sukhova GK, Shi G-P, Simon DI, Chapman HA, Libby P (1998) Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 102:576–583

    PubMed  CAS  Google Scholar 

  154. Sukhova GK, Zhang Y, Pan J-H, Wada Y, Yamamoto T, Naito M et al (2003) Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 111:897–906

    PubMed  CAS  Google Scholar 

  155. Samokhin AO, Wong A, Saftig P, Bromme D (2008) Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 200(1):58–68

    PubMed  CAS  Google Scholar 

  156. Shi GP, Sukhova GK, Grubb A, Ducharme A, Rhode LH, Lee RT et al (1999) Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest 104(9):1191–1197

    PubMed  CAS  Google Scholar 

  157. Bengtsson E, To F, Hakansson K, Grubb A, Branen L, Nilsson J et al (2005) Lack of the cysteine protease inhibitor cystatin C promotes atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25(10):2151–2156

    PubMed  CAS  Google Scholar 

  158. Sukhova GK, Wang B, Libby P, Pan JH, Zhang Y, Grubb A et al (2005) Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circ Res 96(3):368–375

    PubMed  CAS  Google Scholar 

  159. Guimond S, Maccarana M, Olwin BB, Lindahl U, Rapraeger AC (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF) – distince requirements for FGF-1, FGF-2, AND FGF-4. J Biol Chem 268(32):23906–23914

    PubMed  CAS  Google Scholar 

  160. Ai XB, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162(2):341–351

    PubMed  CAS  Google Scholar 

  161. Sala-Newby GB, George SJ, Bond M, Dhoot GK, Newby AC (2005) Regulation of vascular smooth muscle cell proliferation, migration and death by heparan sulfate 6-O-endosulfatase1. FEBS Lett 579(28):6493–6498

    PubMed  CAS  Google Scholar 

  162. Bingley J, Hayward I, Girjes A, Campbell G, Humphries D, Stow J et al (2002) Expression of heparan sulphate N-deacetylase/N-sulphotransferase by vascular smooth muscle cells. Histochem J 34(3):131–137

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

George, S.J., Johnson, J.L. (2012). Extracellular Matrix and Smooth Muscle Cells. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_22

Download citation

Publish with us

Policies and ethics