Skip to main content
Log in

Vibrational Communication in Insects

  • Published:
Entomological Review Aims and scope Submit manuscript

Abstract

The modern literature on insect vibroacoustics is reviewed. Various methods of recording vibrational signals and their possible applications to taxonomic, ethological, and biophysical research are described. The dependence of the type of acoustic communication (vibrational or sound) on body size in insects is discussed. It is shown that vibrational communication exists in representatives of most orders of insects. Vibrational signals are used not only in communication between sexes, but also in other intra- and interspecific interactions of adult insects and occasionally larvae, including acoustic mimicry. Predators and parasitoids can locate their prey by vibrations generated during its mechanical activity, while the prey can also perceive noises produced by the predator’s movements. Some soundproducing insects can also produce and perceive vibrational signals, i.e., use bimodal vibrational-sound communication. Various aspects of oscillation propagation in solid substrates are considered, including the effect of frequency filtering in the substrate on the signal characteristics, the communication range, the possibility of vibrational signals spreading between plants via the contact of their aboveground or underground parts, the mechanisms of locating the vibration source due to nonlinear signal attenuation and resonance in the substrate, as well as biotic and abiotic noise in the vibrational communication channels. The main possible applications of insect vibroacoustics are briefly discussed, such as the use of noise to disrupt male-female communication, acoustic traps, repelling signals, and detection of insect pests in various substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Aflitto, N.C. and Hofstetter, R.W., Use of acoustics to deter bark beetles from entering tree material, Pest Manage. Sci., 2014, vol. 70, no. 12, p. 1808.

    Article  CAS  Google Scholar 

  2. Alt, J.A. and Lakes-Harlan, R., Sensing of substrate vibrations in the adult cicada Okanagana rimosa (Hemiptera: Cicadidae), J. Insect Sci., 2018, vol. 18, no. 3, art. 16.

  3. Bagnères, A.-G. and Hanus, R., Chapter 11. Communication and social regulation in termites, in Social Recognition in Invertebrates. The Knowns and the Unknowns, Aquiloni, L. and Tricarico, E., Eds., Springer, 2015, p. 193.

  4. Barbero, F., Bonelli, S., Thomas, J.A., Balletto, E., and Schönrogge, K., Acoustical mimicry in a predatory social parasite of ants, J. Exp. Biol., 2009, vol. 212, p. 4084.

    Article  CAS  Google Scholar 

  5. Bell, W.J., Roth, L.M., and Nalepa, C.A., Cockroaches. Ecology, Behavior, and Natural History, Baltimore: Johns Hopkins University Press, 2007.

  6. Benediktov, A.A., Acoustic signals in groundhoppers of the genus Tetrix (Orthoptera, Tetrigidae), Zool. Zh., 1998, vol. 77, no. 9, p. 1021.

  7. Benediktov, A.A., Tremulation in the firebug Pyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae), Vestn. Mosk. Univ. Ser. 16 Biol., 2007, no. 4, p. 49.

  8. Benediktov, A.A., Biology, behavior and communication in the genus Erianthus Stål, 1875 (Orthoptera, Eumastacoidea), Russ. Entomol. J., 2008, vol. 17, no. 4, p. 335.

    Google Scholar 

  9. Benediktov, A.A., Acoustic signals of the pygmy mole cricket Xya variegata (Latreille, 1809) (Orthoptera, Tridactyloidea), Russ. Entomol. J., 2012, vol. 21, no. 3, p. 307.

    Google Scholar 

  10. Benediktov, A.A., Vibroacoustic signals in the grasshopper Trilophidia annulata (Thunb.) (Orthoptera, Acrididae, Oedipodinae), Vestn. Mosk. Univ. Ser. 16 Biol., 2015a, no. 1, p. 37.

  11. Benediktov, A.A., Acoustic signals in the larvae of the longhorn beetle Monochamus urussovi (Fischer-Waldheim, 1806) (Coleoptera, Cerambycidae), Byull. Mosk. O-va Ispyt. Prir. Otdel Biol., 2015b, vol. 120, no. 2, p. 58.

    Google Scholar 

  12. Benediktov, A., Korsunovskaya, O., Polilov, A., and Zhan-tiev, R., Unusual mechanism of emission of vibratory signals in pygmy grasshoppers Tetrix tenuicornis (Sahlberg, 1891) (Orthoptera: Tetrigidae), Sci. Nat., 2020, vol. 107, art. 11.

  13. Bennet-Clark, H.C., Size and scale effects as constraints in insect sound communication, Phil. Trans. R. Soc. London, 1998, vol. 353, p. 407.

    Article  Google Scholar 

  14. Buchler, E.R., Wright, T.B., and Brown, E.D., On the functions of stridulation by the passalid beetle Odontotaenius disjunctus (Coleoptera: Passalidae), Anim. Behav., 1981, vol. 29, no. 2, p. 483.

  15. Busnel, R.-G., Pasquinelly, F., and Dumortier, B., Chapter 4. Body tremulations and their transmission as vibrations for short distance information transfer between Ephippiger male and female, in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 43.

  16. Caldwell, M.S., Chapter 6. Interactions between airborne sound and substrate vibration in animal communication, in Studying Vibrational Communication, Cocroft, R., Gogala, M., Hill, P.S.M., and Wessel, A., Eds., Berlin–Heidelberg: Springer, 2014, p. 65.

  17. Casacci, L.P., Bonelli, S., Balletto, E., and Barbero, F., Multi-modal signalling in myrmecophilous butterflies, Front. Ecol. Evol., 2019, vol. 7, art. 454.

  18. Claridge, M.F., Morgan, J.C., and Moulds, M.S., Substratetransmitted acoustic signals of the primitive cicada, Tettigarcta crinita Distant (Hemiptera, Cicadoidea, Tettigarctidae), J. Nat. Hist., 1999, vol. 33, p. 1831.

  19. Cocroft, R.B., Vibrational communication facilitates cooperative foraging in a phloem-feeding insect, Proc. R. Soc. B, 2005, vol. 272, no. 1567, p. 1023.

    Article  Google Scholar 

  20. Cocroft, R.B. and De Luca, P., 6. Size–frequency relationships in insect vibratory signals, in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 99.

  21. Cocroft, R.B. and Rodríguez, R.L., The behavioral ecology of insect vibrational communication, BioScience, 2005, vol. 55, no. 4, p. 323.

    Article  Google Scholar 

  22. Cocroft, R.B., Tieu, T.D., Hoy, R.R., and Miles, R.N., Directionality in the mechanical response to substrate vibration in a treehopper (Hemiptera: Membracidae: Umbonia crassicornis), J. Comp. Physiol. Ser. A, 2000, vol. 186, no. 7, p. 695.

  23. Cocroft, R.B., Shugart, H.J., Konrad, K.T., and Tibbs, K., Variation in plant substrates and its consequences for insect vibrational communication, Ethology, 2006, vol. 112, p. 779.

    Article  Google Scholar 

  24. Cocroft, R.B., Gogala, M., Hill, P.S.M., and Wessel, A. (Eds.), Studying Vibrational Communication, Berlin–Heidelberg: Springer, 2014.

  25. Čokl, A., Blassioli-Moraes, M.C., Laumann, R.A., Žunič, A., and Borges, M., Chapter 7. Stinkbugs: multisensory communication with chemical and vibratory signals transmitted through different media, in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 91.

  26. Conrad, T. and Ayasse, M., The role of vibrations in population divergence in the red mason bee, Osmia bicornis, Curr. Biol., 2015, vol. 25, no. 21, p. 2819.

  27. Conrad, T. and Ayasse, M., The differences in the vibrational signals between male O. bicornis from three countries in Europe, J. Low Freq. Noise Vibr. Act. Control, 2019, vol. 38, no. 2, p. 871.

  28. Davranoglou, L.-R., Cicirello, A., Taylor, G.K., and Mortimer, B., Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size, PLoS Biol., 2019a, vol. 17, no. 3, art. e3000155.

  29. Davranoglou, L.-R., Mortimer, B., Taylor, G.K., and Malenovsky, I., On the morphology and possible function of two putative vibroacoustic mechanisms in derbid planthoppers (Hemiptera: Fulgoromorpha: Derbidae), Arthropod Str. Dev., 2019b, vol. 52, art. 100880.

  30. De Vrijer, P.W.F., Variability in calling signals of the planthopper Javesella pellucida (F.) (Homoptera, Delphacidae) in relation to temperature, and consequences for species recognition during distant communication, Neth. J. Zool., 1984, vol. 34, no. 3, p. 388.

  31. De Vrijer, P.W.F., Species distinctiveness and variability of acoustic calling signals in the planthopper genus Javesella (Homoptera, Delphacidae), Neth. J. Zool., 1986, vol. 36, no. 1, p. 162.

  32. Dejan, K.A., Fresquez, J.M., Meyer, A.M., and Edgerly, J.S., Maternal territoriality achieved through shaking and lunging: an investigation of patterns in associated behaviors and substrate vibrations in a colonial embiopteran, Antipaluria urichi, J. Insect Sci., 2013, vol. 13, art. 82.

  33. Devetak, D., Chapter 16. Sand-borne vibrations in prey detection and orientation of antlions, in Studying Vibrational Communication, Cocroft, R.B., Gogala, M., Hill, P.S.M., and Wessel, A., Eds., Berlin–Heidelberg: Springer, 2014, p. 319.

  34. DeVries, P.J., Cocroft, R.B., and Thomas, J., Comparison of acoustical signals in Maculinea butterfly caterpillars and their obligate host Myrmica ants, Zool. J. Linn. Soc., 1993, vol. 49, no. 3, p. 229.

  35. Di Giulio, A., Fattorini, S., Moore, W., Robertson, J., and Maurizi, E., Form, function and evolutionary significance of stridulatory organs in ant nest beetles (Coleoptera: Carabidae: Paussini), Eur. J. Entomol., 2014, vol. 111, no. 5, p. 692–702.

    Article  Google Scholar 

  36. Di Giulio, A., Maurizi, E., Barbero, F., Sala, M., Fattorini, S., Balletto, E., and Banelli, S., The pied piper: a parasitic beetle’s melodies modulate ant behaviours, PLoS One, 2015, vol. 10, no. 7, art. e0130541.

  37. Drosopoulos, S. and Claridge, M.F. (Eds.), Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Boca Raton etc.: Taylor & Francis, 2006.

  38. Eberhard, M.J.B. and Eberhard, S.H., Evolution and diversity of vibrational signals in Mantophasmatodea (Insecta), J. Insect Behav., 2015, vol. 26, no. 3, p. 352.

    Article  Google Scholar 

  39. Eberhard, M.J.B. and Picker, M.D., Vibrational communication in two sympatric species of Mantophasmatodea (heelwalkers), J. Insect Behav., 2008, vol. 21, no. 4, art. 240.

  40. Eberhard, M.J.B. and Picker, M.D., Chapter 15. Vibrational communication in heelwalkers (Mantophasmatodea), in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., LakesHarlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 293.

  41. Eberhard, M.J.B., Lang, D., Metscher, B., Pass, G., Picker, M., and Wolf, H., Structure and sensory physiology of the leg scolopidial organs in Mantophasmatodea and their role in vibrational communication, Arthropod Str. Dev., 2010, vol. 39, no. 4, p. 230.

    Article  CAS  Google Scholar 

  42. Eriksson, A., Anfora, G., Lucchi, A., Virant-Doberlet, M., and Mazzoni, V., Inter-plant vibrational communication in a leafhopper insect, PLoS One, 2011, vol. 6, no. 5, art. e19692.

  43. Fertin, A. and Casas, J., Orientation towards prey in ant-lions: efficient use of wave propagation in sand, J. Exp. Biol., 2007, vol. 210, p. 3337.

    Article  Google Scholar 

  44. First International Symposium on Biotremology, Fondazione Edmund Mach, San Michele all’Adige, Trento, Italy, July 5–7, 2016. Abstract Book, 2016.

  45. Fletcher, L.E., Yack, J.E., Fitzgerald, T.D., and Hoy, R.R., Vibrational communication in the cherry leaf roller caterpillar Caloptilia serotinella (Gracillarioidea: Gracillariidae), J. Insect Behav., 2006, vol. 19, no. 1, p. 1.

  46. Giard, M.A., Sur la castration parasitaire des Typhlocyba par une larve d’Hyménoptère (Aphelopus melaleucus Dalm.) et par une larve de Diptère (Atelenevra spuria Meig.), C. R. Acad. Sci., 1889, vol. 109, no. 19, p. 708.

  47. Gibson, J.S. and Cocroft, R.B., Vibration-guided mate searching in treehoppers: directional accuracy and sampling strategies in a complex sensory environment, J. Exp. Biol., 2018, vol. 221, no. 6, art. jeb175083.

  48. Gogala, M., 21. Vibratory signals produced by Heteroptera – Pentatomorpha and Cimicomorpha, in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 275.

  49. Gogala, M. and Trilar, T., Cicadas using two mechanisms and communication channels for acoustic and vibrational communication, in Second International Symposium on Biotremology, Centro Congressi, Riva del Garda, Trento, Italy, September 4–6, 2018. Abstract Book, 2018, p. 22.

  50. Gordon, S.D. and Krugner, R., Chapter 18. Mating disruption by vibrational signals: applications for management of the glassy-winged sharpshooter, in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 355.

  51. Guedes, R.N.C., Matheson, S.M., Frei, B., Smith, M.L., and Yack, J.E., Vibration detection and discrimination in the masked birch caterpillar (Drepana arcuata), J. Comp. Physiol. Ser. A, 2012, vol. 198, no. 5, p. 325.

  52. Gwynne, D.T., Reproductive behavior of ground weta (Orthoptera: Anostostomatidae): drumming behavior, nuptial feeding, post-copulatory guarding and maternal care, J. Kansas Entomol. Soc., 2004, vol. 77, no. 4, p. 414.

    Article  Google Scholar 

  53. Hager, F.A. and Kirchner, W.H., Chapter 12. Directionality in insect vibration sensing: behavioral studies of vibrational orientation, in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 235.

  54. Hager, F.A., Krausa, K., and Kirchner, W.H., Chapter 16. Vibrational behavior in termites (Isoptera), in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 309.

  55. Hartbauer, M., Gepp, J., Hinteregger, K., and Koblmüller, S., Diversity of wing patterns and abdomen-generated substrate sounds in 3 European scorpionfly species, Insect Sci., 2015, vol. 22, no. 4, p. 521.

    Article  Google Scholar 

  56. Henry, C.S., 10. Acoustic communication in neuropterid insects, in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 153.

  57. Henry, C.S. and Wells, M.L.M., Courtship songs of green lacewings filmed in slow motion: how a simple vibrating structure can generate complex signals (Neuroptera: Chrysopidae: Chrysoperla), J. Insect Behav., 2015, vol. 28, no. 2, p. 89.

  58. Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A. (Eds.), Biotremology: Studying Vibrational Behavior, Springer Nature Switzerland, 2019.

  59. Hoch, H., Deckert, J., Wessel, A., Vibrational signalling in a Gondwanan relict insect (Hemiptera: Coleorrhyncha: Peloridiidae), Biol. Lett., 2006, vol. 2, p. 222.

    Article  Google Scholar 

  60. Hoch, H., Asche, M., Bräunig, P., Ehlers, S., Hill, P.M.S., Kuhelj, A., Mühlethaler, R., Virant-Doberlet, M., and Wessel, A., On the evolution of the tymbalian tymbal organ: Comment on “Planthopper bugs use a fast, cyclic elastic recoil mechanism for effective vibrational communication at small body size” by Davranoglou et al. 2019, Cicadina, 2019, vol. 18, p. 13.

    Google Scholar 

  61. Hofstetter, R.W., Aflitto, N., Bedoya, C.L., Yturralde, K., and Dunn, D.D., Chapter 21. Vibrational behavior in bark beetles: applied aspects, in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 415.

  62. Hoikkala, A., 11. Inheritance of male sound characteristics in Drosophila species, in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 167.

  63. Howard, D.R., Schmidt, A.P., Hall, C.L., and Mason, A.C., Substrate-borne vibration mediates intrasexual agonism in the New Zealand cook strait giant weta (Deinacrida rugosa), J. Insect Behav., 2018, vol. 31, no. 6, p. 599.

  64. Hrncir, M. and Barth, F.G., Chapter 18. Vibratory communication in stingless bees (Meliponini): the challenge of interpreting the signals, in Studying Vibrational Communication, Cocroft, R.B., Gogala, M., Hill, P.S.M., and Wessel, A., Eds., Berlin–Heidelberg: Springer, 2014, p. 349.

  65. Hrncir, M., Barth, F.G., and Tautz, J., 32. Vibratory and airborne-sound signals in bee communication, in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 421.

  66. Hunt, J.H. and Richard, F.-J., Intracolony vibroacoustic communication in social insects, Insectes Soc., 2013, vol. 60, no. 4, p. 403.

    Article  Google Scholar 

  67. Hunt, R.E. and Morton, T.L., Regulation of chorusing in the vibrational communication system of the leafhopper Graminella nigrifrons, Am. Zool., 2001, vol. 41, no. 5, p. 1222.

  68. Hunt, R.E. and Nault, L.R., Roles of interplant movement, acoustic communication, and phototaxis in mate-location behaviour of the leafhopper Graminella nigrifrons, Behav. Ecol. Sociobiol., 1991, vol. 28, p. 315.

  69. Hussein, W.B., Hussein, M.A., and Becker, T., Detection of the red palm weevil Rhynchophorus ferrugineus using its bioacoustics features, Bioacoustics, 2010, vol. 19, no. 3, p. 177.

  70. Ichikawa, T. and Ishii, S., Mating signal of the brown planthopper Nilaparvata lugens (Stål) (Homoptera: Delphacidae): vibration of the substrate, Appl. Entomol. Zool., 1974, vol. 9, no. 3, p. 196.

  71. Inta, R., Evans, T.A., and Lai, J.C.S., Effect of vibratory soldier alarm signals on the foraging behavior of subterranean termites (Isoptera: Rhinotermitidae), J. Econ. Entomol., 2009, vol. 102, no. 1, p. 121.

    Article  CAS  Google Scholar 

  72. Ivanov, V.D., Vibrational signals in caddisflies (Insecta, Trichoptera), Zool. Zh., 1994, vol. 73, no. 12, p. 55.

    Google Scholar 

  73. Kanmiya, K., Discovery of male acoustic sounds in Greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae), Appl. Entomol. Zool., 1996, vol. 31, p. 255.

  74. Kanmiya, K., 28. Mating behaviour and vibratory signals in whiteflies (Hemiptera: Aleyrodidae), in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006a, p. 365.

  75. Kanmiya, K., 29. Communication by vibratory signals in Diptera, in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006b, p. 381.

  76. Kasper, J. and Hirschberger, P., Vibratory communication in dung beetles (Coleoptera, Scarabaeidae), in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 405.

  77. Kerchev, I.A., Interspecific differences of stridulatory signals in three species of bark beetles from the genus Polygraphus Er. (Coleoptera: Curculionidae, Scolytinae) inhabiting the island of Sakhalin, PeerJ, 2020, vol. 8, art. e8281.

  78. Kirkaldy, G.W., Leaf-hoppers – supplement (Hemiptera), in Report of Work of the Experiment Station of the Hawaiian Sugar Planters’ Association, Division of Entomology. Bull. no. 3, 1907, p. 1.

  79. Korsunovskaya, O., Berezin, M., Heller, K.-G., Tkacheva, E., Kompantseva, T., and Zhantiev, R., Biology, sounds and vibratory signals of hooded katydids (Orthoptera: Tettigoniidae: Phyllophorinae), Zootaxa, 2020, vol. 4852, no. 3, p. 309.

    Article  Google Scholar 

  80. Krausa, K., Hager, F.A., Kiatoko, N., and Kirchner, W.H., Vibrational signals of African stingless bees, Insectes Soc., 2017, vol. 64, no. 3, p. 415.

    Article  Google Scholar 

  81. Lazzari, C.R., Manrique, G., and Schilman, P.E., Vibratory communication in Triatominae (Heteroptera), in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 297.

  82. Legendre, F., Marting, P.R., and Cocroft, R.B., Competitive masking of vibrational signals during mate search in a treehopper, Anim. Behav., 2012, vol. 83, p. 361.

    Article  Google Scholar 

  83. Liao, Y.-C., Wu, Z.-Z., and Yang, M.-M., Vibrational behavior of psyllids (Hemiptera: Psylloidea): functional morphology and mechanisms, PLoS One, 2019, vol. 14, no. 9: e0215196.

  84. Liu, Z., Xin, Y., Xu, B., Raffa, K.F., and Sun, J., Soundtriggered production of antiaggregation pheromone limits overcrowding of Dendroctonus valens attacking pine trees, Chem. Senses, 2017, vol. 42, no. 1, p. 59.

  85. Magal, C., Schöller, M., Tautz, J., and Casas, J., The role of leaf structure in vibration propagation, J. Acoust. Soc. Am., 2000, vol. 108, no. 5, p. 2412.

    Article  CAS  Google Scholar 

  86. Mankin, R.W., Chapter 20. Vibrational trapping and interference with mating of Diaphorina citri, in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 399.

  87. Mankin, R.W., Hodges, R.D., Nagle, H.T., Schal, C., Pereira, R.M., and Koehler, P.G., Acoustic indicators for targeted detection of stored product and urban insect pests by inexpensive infrared, acoustic, and vibrational detection of movement, J. Econ. Entomol., 2010, vol. 103, no. 5, p. 1636.

    Article  CAS  Google Scholar 

  88. Mazzoni, V., Prešern, J., Lucchi, A., and Virant-Doberlet, M., Reproductive strategy of the Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae), Bull. Entomol. Res., 2009, vol. 99, p. 401.

  89. Mazzoni, V., Nieri, R., Eriksson, A., Virant-Doberlet, M., Polajnar, J., Anfora, G., and Lucchi, A., Chapter 17. Mating disruption by vibrational signals: state of the field and perspectives, in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 331.

  90. McNett, G.D. and Cocroft, R.B., Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers, Behav. Ecol., 2008, vol. 19, p. 650.

  91. McNett, G.D., Miles, R.N., Homentcovschi, D., and Cocroft, R.B., A method for two-dimensional characterization of animal vibrational signals transmitted along plant stems, J. Comp. Physiol. Ser. A, 2006, vol. 192, no. 12, p. 1245.

    Article  Google Scholar 

  92. McNett, G.D., Luan, L.H., and Cocroft, R.B., Wind-induced noise alters signaler and receiver behavior in vibrational communication, Behav. Ecol. Sociobiol., 2010, vol. 64, no. 12, p. 2043.

    Article  Google Scholar 

  93. McVean, A. and Field, L., Communication by substratum vibration in the New Zealand tree weta, Hemideina femorata (Stenopelmatidae: Orthoptera), J. Zool., 2009, vol. 239, p. 101.

  94. Michelsen, A., Fink, F., Gogala, M., and Traue, D., Plants as transmission channels for insect vibrational songs, Behav. Ecol. Sociobiol., 1982, vol. 11, p. 269.

    Article  Google Scholar 

  95. Morris, G.K. and de Luca, P.A., Courtship communication in meadow katydids: female preference for large male vibrations, Behaviour, 1998, vol. 135, no. 6, p. 777.

    Article  Google Scholar 

  96. Morris, G.K., Mason, A.C., Wall, P., and Belwood, J.J., High ultrasonic and tremulation signals in Neotropical katydids (Orthoptera: Tettigoniidae), J. Zool., 1994, vol. 233, no. 1, p. 129.

    Article  Google Scholar 

  97. Newport, G., On the anatomy and affinities of Pteronacys regalis, Newm.: with a postscript, containing descriptions of some American Perlidae, together with notes on their habits, Trans. Linn. Soc. London, 1851, vol. 20, p. 425.

  98. Oberst, S., Lai, J.C.S., and Evans, T.A., Chapter 5. Physical basis of vibrational behaviour: channel properties, noise and excitation signal extraction, in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 53.

  99. Ossiannilsson, F., Insect drummers. A study on the morphology and function of the sound-producing organ of Swedish Homoptera Auchenorrhyncha with notes on their sound production, Opusc. Entomol., 1949, Suppl. 10, p. 1.

  100. Ossiannilsson, F., Sound-production in psyllids (Hem. Hom.), Opusc. Entomol., 1950, vol. 15, no. 3, p. 202.

    Google Scholar 

  101. Pearman, J.V., On sound production in the Psocoptera and on a presumed stridulatory organ, Entomol. Mon. Mag., 1928, vol. 64, p. 179.

    Google Scholar 

  102. Pepiciello, I., Cini, A., Nieri, R., Mazzoni, V., and Cervo, R., Adult–larval vibrational communication in paper wasps: the role of abdominal wagging in Polistes dominula, J. Exp. Biol., 2018, vol. 221, art. jeb186247.

  103. Polajnar, J., Eriksson, A., Stacconi, M.V.R., Lucchi, A., Anfora, G., Virant-Doberlet, M., and Mazzoni, V., The process of pair formation mediated by substrate-borne vibrations in a small insect, Behav. Proc., 2014, vol. 107, p. 68.

    Article  Google Scholar 

  104. Polajnar, J., Maistrello, L., Ibrahim, A., and Mazzoni, V., Chapter 19. Can vibrational playback improve control of an invasive stink bug? in Biotremology: Studying Vibrational Behavior, Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M., and Wessel, A., Eds., Springer Nature Switzerland, 2019, p. 375.

  105. Proaño, C.B., Cruz, S., McMillan, D.M., and Edgerly, J.S., Exploration of substrate vibrations as communication signals in a webspinner from Ecuador (Embioptera: Clothodidae), Neotrop. Entomol., 2012, vol. 41, p. 196.

    Article  Google Scholar 

  106. Purcell, A.H. and Loher, W., Acoustical and mating behaviour of two taxa in the Macrosteles fascifrons species complex, Ann. Entomol. Soc. Am., 1976, vol. 69, no. 3, p. 513.

  107. Reyes-Castillo, P. and Jarman, M., Some notes on larval stridulation in neotropical Passalidae (Coleoptera: Lamellicornia), Coleopt. Bull., 1980, vol. 34, no. 3, p. 263.

    Google Scholar 

  108. Riede, K., Diversity of sound-producing insects in a Bornean lowland rain forest, in Tropical Rainforest Research, Netherlands: Kluwer, 1996, p. 77.

  109. Riva, F., Barbero, F., Bonelli, S., Balletto, E., and Casacci, L., The acoustic repertoire of lycaenid butterfly larvae, Bioacoustics, 2017, vol. 26, no. 1, p. 77.

    Article  Google Scholar 

  110. Roces, F., Tautz, J., and Hölldobler, B., Stridulation in leafcutting ants: short-range recruitment through plant-borne vibrations, Naturwissenschaften, 1993, vol. 80, p. 521.

    Article  Google Scholar 

  111. Rupprecht, R., Vibrationssignale bei der Paarung von Panorpa (Mecoptera/Insecta), Experientia, 1974, vol. 30, no. 4, p. 340.

  112. Sala, M., Casacci, L., Balletto, E., Bonelli, S., and Barbero, F., Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources, PLoS One, 2014, vol. 9, no. 4, art. e94341.

  113. Saxena, K.N. and Kumar, H., Interruption of acoustic communication and mating in a leafhopper and planthopper by aerial sound vibrations picked up by plants, Experientia, 1980, vol. 36, p. 933.

    Article  Google Scholar 

  114. Saxena, K.N. and Kumar, H., Acoustic communication in the sexual behaviour of the leafhopper, Amrasca devastans, Physiol. Entomol., 1984, vol. 9, p. 77.

  115. Schal, C., Gautier, J.-Y., and Bell, W.J., Behavioural ecology of cockroaches, Biol. Rev., 1984, vol. 59, no. 2, p. 209.

    Article  Google Scholar 

  116. Schmitt, M. and Traue, D., Morphological and bioacoustic aspects of stridulation in Criocerinae (Coleoptera, Chrysomelidae), Zool. Anz., 1990, vol. 225, no. 5, p. 225.

    Google Scholar 

  117. Schuster, J.C., Acoustical signals of passalid beetles: complex repertoires, Florida Entomol., 1983, vol. 66, no. 4, p. 486.

    Article  Google Scholar 

  118. Scott, J., Kawahara, A., Skevington, J., Yen, S.-H., Sami, A., Smith, M.L., and Yack, J.E., The evolutionary origins of ritualized acoustic signals in caterpillars, Nat. Comm., 2010, vol. 1, no. 1, art. 4.

  119. Second International Symposium on Biotremology, Centro Congressi, Riva del Garda, Trento, Italy, September 4–6, 2018. Abstract Book, 2018.

  120. Shestakov, L.S., Vibrational signals in two species of true bugs of the family Coreidae (Heteroptera), Vestn. Mosk. Univ. Ser. 16 Biol., 2009, no. 1, p. 53.

    Google Scholar 

  121. Shestakov, L.S., Disruptive signals are an effective mechanism preventing copulation in Pentatoma rufipes, Sensor. Sist., 2020, vol. 34, no. 1, p. 10.

  122. Shestakov, L.S. and Elhashash, A., The role of acoustic and vibrational signals in host-parasitoid interactions in Tachinidae (Diptera) and Pentatomidae (Heteroptera), Sensor. Sist., 2020, vol. 34, no. 1, p. 14.

    Google Scholar 

  123. Shestakov, L.S. and Elhashash, A., The use of vibrational signals of insects to develop safe methods for pest control, Sensor. Sist., 2021, vol. 35, no. 1, p. 39.

    Google Scholar 

  124. Shestakov, L.S. and Kasparson, A.A., New data on vibrational communication in the beetle Acanthoscelides obtectus (Coleoptera, Bruchidae), Entomol. Rev., 2019, vol. 99, no. 4, p. 456.

  125. Smit, F.G.A.M., The song of a flea – a stridulating mechanism in Siphonaptera? Entomol. Scand. Suppl., 1981, vol. 15, p. 171.

    Google Scholar 

  126. Stewart, K.W., Vibrational communication (drumming) and mate-searching behavior of stoneflies (Plecoptera); evolutionary considerations, in Trends in Research in Ephemeroptera and Plecoptera, Domínguez, E., Ed., Boston: Springer, 2001, p. 217.

  127. Stewart, K.W. and Sundberg, J.B., Vibratory communication and mate searching behaviour in stoneflies, in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 179.

  128. Stölting, H., Moore, T.E., and Lakes-Harlan, R., Substrate vibrations during acoustic signalling in the cicada Okanagana rimosa, J. Insect Sci., 2002, vol. 2, no. 1, art. 2.

  129. Strauss, J., and Lakes-Harlan, R., Vibrational sensitivity of the subgenual organ complex in female Sipyloidea sipylus stick insects in different experimental paradigms of stimulus direction, leg attachment, and ablation of a connective tibial sense organ, Comp. Biochem. Physiol. Part A, 2017, vol. 203, p. 100.

  130. Strauss, J., Stritih, N., and Lakes-Harlan, R., The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution, R. Soc. Open Sci., 2014, vol. 1, art. 140240.

  131. Strauss, J., Lomas, K., and Field, L.H., The complex tibial organ of the New Zealand ground weta: sensory adaptations for vibrational signal detection, Sci. Rep., 2017, vol. 7, art. 2031.

  132. Stritih, N. and Čokl, A., Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera, PloS One, 2012, vol. 7, no. 10, art. e47646.

  133. Stritih, N. and Čokl, A., Chapter 19. The role of frequency in vibrational communication of Orthoptera, in Studying Vibrational Communication, Cocroft, R.B., Gogala, M., Hill, P.S.M., and Wessel, A., Eds., Berlin–Heidelberg: Springer, 2014, p. 375.

  134. Strübing, H. and Rollenhagen, T., Ein neues Aufnehmersystem für Vibrationssignale und seine Anwendung auf Beispiele aus der Familie Delphacidae (Homoptera-Cicadina), Zool. Jahrb. Abt. Allg. Zool. Physiol. Tiere, 1988, vol. 92, p. 245.

    Google Scholar 

  135. Suryanarayanan, S., Hermanson, J.C., and Jeanne, R.L., A mechanical signal biases caste development in a social wasp, Curr. Biol., 2011, vol. 21, no. 3, p. 231.

    Article  CAS  Google Scholar 

  136. Tishechkin, D.Yu., Vibrational communication in Aphrodinae leafhoppers (Deltocephalinae auct. Homoptera: Cicadellidae) and related groups with notes on classification of higher taxa, Russ. Entomol. J., 2000a, vol. 9, no. 1, p. 1.

    Google Scholar 

  137. Tishechkin, D.Yu., Vibrational communication in Cicadellinae sensu lato and Typhlocybinae leafhoppers (Homoptera: Cicadellidae) with notes on classification of higher taxa, Russ. Entomol. J., 2000b, vol. 9, no. 4, p. 283.

    Google Scholar 

  138. Tishechkin, D.Yu., Vibrational communication in leafhoppers from Ulopides subfamilies group (Homoptera: Cicadellidae) and Membracidae with notes on classification of higher taxa, Russ. Entomol. J., 2003a, vol. 12, no. 1, p. 11.

    Google Scholar 

  139. Tishechkin, D.Yu., Vibrational communication in Cercopoidea and Fulgoroidea (Homoptera: Cicadina) with notes on classification of higher taxa, Russ. Entomol. J., 2003b, vol. 12, no. 2, p. 129.

    Google Scholar 

  140. Tishechkin, D.Yu., Vibratory communication in Psylloidea (Homoptera), in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006a, p. 357.

  141. Tishechkin, D.Yu., On the structure of stridulatory organs in jumping plant lice (Homoptera: Psyllinea), Russ. Entomol. J., 2006b, vol. 15, no. 3, p. 335.

    Google Scholar 

  142. Tishechkin, D.Yu., New data on vibratory communication in jumping plant lice of the families Aphalaridae and Triozidae (Homoptera, Psyllinea), Entomol. Rev., 2007a, vol. 87, no. 4, p. 394.

    Article  Google Scholar 

  143. Tishechkin, D.Yu., The possibility to use bioacoustic characters in the taxonomy of the jumping plant lice with an example of the genus Craspedolepta (Homoptera, Psyllinea, Aphalaridae) and description of a new species from Transbaikalia, Entomol. Rev., 2007b, vol. 87, no. 5, p. 561.

  144. Tishechkin, D.Yu., Background noises in vibratory communication channels of Homoptera (Cicadinea and Psyllinea), Russ. Entomol. J., 2007c, vol. 16, no. 1, p. 39.

    Google Scholar 

  145. Tishechkin, D.Yu., On the similarity of temporal pattern of vibrational calling signals in different species of Fulgoroidea (Homoptera: Auchenorrhyncha), Russ. Entomol. J., 2008, vol. 17, no. 4, p. 349.

    Google Scholar 

  146. Tishechkin, D.Yu., Do different species of grass-dwelling small Auchenorrhyncha (Homoptera) have private vibrational communication channels? Russ. Entomol. J., 2011, vol. 20, no. 2, p. 135.

    Article  Google Scholar 

  147. Tishechkin, D.Yu., Vibrational background noise in herbaceous plants and its impact on acoustic communication of small Auchenorrhyncha and Psyllinea (Homoptera), Entomol. Rev., 2013, vol. 93, no. 5, p. 548.

    Article  Google Scholar 

  148. Tishechkin, D.Yu., The use of bioacoustic characters for distinguishing between cryptic species in insects: potentials, restrictions, and prospects, Entomol. Rev., 2014, vol. 94, no. 3, p. 289.

    Article  Google Scholar 

  149. Tishechkin, D.Yu. and Bukhvalova, M.A., Acoustic communication in grasshopper communities (Orthoptera: Acrididae: Gomphocerinae): segregation of acoustic niches, Russ. Entomol. J., 2010, vol. 18, no. 3, p. 165.

    Google Scholar 

  150. Tishechkin, D.Yu. and Burlak, N.A., Pure-tone vibrational signals in small Auchenorrhyncha (Homoptera), Entomol. Rev., 2013, vol. 93, no. 9, p. 1085.

    Article  Google Scholar 

  151. Tishechkin, D.Yu. and Vedenina, V.Yu., Acoustic signals in insects: a reproductive barrier and a taxonomic character, Entomol. Rev., 2016, vol. 96, no. 9, p. 1127.

    Article  Google Scholar 

  152. Velilla, E., Muñoz, M., Quiroga, N., Symes, L., ter Hofstede, H., Page, R.A., Simon, R., Ellers, J., and Halfwerk, W., Gone with the wind: is signal timing in a neotropical katydid an adaptive response to variation in wind-induced vibratory noise? Behav. Ecol. Sociobiol., 2020, vol. 74, no. 5, art. 59.

  153. Virant-Doberlet, M. and Čokl, A., Vibrational communication in insects, Neotrop. Entomol., 2004, vol. 33, no. 2, p. 121.

    Article  Google Scholar 

  154. Virant-Doberlet, M., Kuhelj, A., Polajnar, J., and Šturm, R., Predator–prey interactions and eavesdropping in vibrational communication networks, Front. Ecol. Evol., 2019, vol. 7, art. 203.

  155. Wessel, A., 30. Stridulation in the Coleoptera – an overview, in Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution, Drosopoulos, S. and Claridge, M.F., Eds., Boca Raton etc.: Taylor & Francis, 2006, p. 397.

  156. Wignall, A.E. and Taylor, P.W., Assassin bug uses aggressive mimicry to lure spider prey, Proc. R. Soc. B, 2011, vol. 278, p. 1427.

    Article  Google Scholar 

  157. Yack, J.E., Smith, M.L., and Weatherhead, P.J., Caterpillar talk: acoustically mediated territoriality in larval Lepidoptera, Proc. Natl. Acad. Sci., 2001, vol. 98, no. 20, p. 11371.

    Article  CAS  Google Scholar 

  158. Zhantiev, R.D., Bioakustika nasekomykh (Insect Bioacoustics), Moscow: Mosk. Univ., 1981.

  159. Zych, A.F., Mankin, R.W., Gillooly, J.F., and Foreman, E., Stridulation by Jadera haematoloma (Hemiptera: Rhopalidae): production mechanism and associated behaviors, Ann. Entomol. Soc. Am., 2012, vol. 105, no. 1, p. 118.

Download references

ACKNOWLEDGMENTS

I am deeply grateful to Dr. V.Yu. Vedenina (Institute for Information Transmission Problems, Russian Academy of Sciences) and Prof. K.V. Makarov (Moscow Pedagogical State University) for reading the manuscript and providing valuable comments and suggestions.

Funding

The reported study was carried out as part of the Scientific Project of the State Order of the Government of Russian Federation to Lomonosov Moscow State University No. 121032300063-3 and financially supported by the Russian Foundation for Basic Research, Project No. 20-14-50068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Tishechkin.

Ethics declarations

Statement on the welfare of animals. All the applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All the procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tishechkin, D.Y. Vibrational Communication in Insects. Entmol. Rev. 102, 737–768 (2022). https://doi.org/10.1134/S001387382206001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001387382206001X

Keywords:

Navigation