Skip to main content

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

In this chapter, we describe an icosahedral grid method for spherical grid discretization of global atmospheric models. An icosahedral grid is applied to a shallow-water model in this chapter, and application to a global three-dimensional model will be shown in the next chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and suggested reading

  • Adcroft, A., Campin, J.-M., Hill, C., and Marshall, J., 2004: Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon. Wea. Rev., 132, 2845–2863.

    Article  Google Scholar 

  • Baba, Y., Takahashi, K., Sugimura, T., and Goto, K., 2010: Dynamical core of an atmospheric general circulation model on a Yin-Yang grid. Mon. Wea. Rev., 138, 3988–4005.

    Article  Google Scholar 

  • Baumgardner, J. R. and Frederickson, P. O., 1985: Icosahedral discretization of the two-sphere. SIAM J. Numer. Anal., 22, 1107–1115.

    Article  Google Scholar 

  • Blackburn, M., Williamson, D. L, Nakajima, K., Ohfuchi, W., Takahashi, Y.O., Hayashi, Y.-Y., Nakamura, H., Ishiwatari, M., McGregor, J., Borth, H., Wirth, V., Frank, H., Bechtold, P., Wedi, N.P., Tomita, H., Satoh, M., Zhao,

    Google Scholar 

  • M., Held, I. M., Suarez, M. J., Lee, M.-I., Watanabe, M., Kimoto, M., Liu, Y., Wang, Z., Molod, A., Rajendran, K., Kitoh A., and Stratton R., 2012: The Aqua Planet Experiment (APE): Control SST Simulation. J. Meteor. Soc. Japan, 91A, in press, doi:10.2151/jmsj.2013-A02.

    Google Scholar 

  • Cooley, J.W. and Turkey, J.W., 1965: An algorithm for the machine computation of complex Fourier series. Math. Comput., 19, 297–301.

    Google Scholar 

  • Côté, J., 1988: A Lagrange multiplier approach for the metric terms of semi- Lagrangian models on the sphere. Q. J. R. Meteorol. Soc., 114, 1347–1352.

    Google Scholar 

  • Cullen, M. J.P., 1974: Integration of the primitive equations on a sphere using the finite element method. Q. J. R. Meteorol. Soc., 100, 555–562.

    Article  Google Scholar 

  • Cullen, M. J.P. and Hall, C.D., 1979: Forecasting and general circulation results from finite element models. Q. J. R. Meteorol. Soc., 105, 571–591.

    Article  Google Scholar 

  • Dudhia, J. and Bresch, J. F., 2002: A global version of PSU-NCAR mesoscale model. Mon. Wea. Rev., 130, 2989–3007.

    Article  Google Scholar 

  • Gassmann, A., 2011: Inspection of hexagonal and triangular C-grid discretizations of the shallow water equations. J. Comp. Phys., 230, 2706–2721.

    Article  Google Scholar 

  • Heikes, R.H. and Randall, D.A., 1995a: Numerical integration of the shallowwater equations on a twisted icosahedral grid. Part I: Basic design and results of tests. Mon. Wea. Rev., 123, 1862–1880.

    Article  Google Scholar 

  • Heikes, R.H. and Randall, D.A., 1995b: Numerical integration of the shallowwater equations on a twisted icosahedral grid. Part II: A detailed description of the grid and analysis of numerical accuracy. Mon. Wea. Rev., 123, 1881– 1887.

    Google Scholar 

  • Lin, S.-J., 2004: A “vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293–2307.

    Article  Google Scholar 

  • Masuda, Y. and Ohnishi, H., 1986: An integration scheme of the primitive equation model with an icosahedral-hexagonal grid system and its application to the shallow water equations, Short- and Medium-Range Numerical Weather Prediction. Collection of Papers Presented at the WMO/IUGG NWP Symposium, Tokyo, Aug. 4–8 1986, Japan Meteorological Society, 317–326.

    Google Scholar 

  • Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M., Hanisch, T., Paul, G., and Wergen, W., 2002: The operational global icosahedralhexagonal gridpoint model GME: description and high-resolution tests. Mon. Wea. Rev., 130, 319–338.

    Article  Google Scholar 

  • McGregor, J. L., 1996: Semi-Lagrangian advection on conformal-cubic grids, Mon. Wea. Rev., 124, 1311–1322.

    Article  Google Scholar 

  • Mesinger, D., 2000: Numerical methods: The Arakawa approach, horizontal grid, global, and limited-area modeling. In General Circulation Model Development, edited by D. A. Randall. Academic Press, 373–419.

    Google Scholar 

  • Miura, H. and Kimoto, M., 2005: A comparison of grid quality of optimized spherical hexagonal-pentagonal geodesic grids. Mon. Wea. Rev., 133, 2817– 2833.

    Article  Google Scholar 

  • Phillips, N.A., 1959: Numerical integration of the primitive equation on the hemisphere. Mon. Wea. Rev., 87, 333–345.

    Article  Google Scholar 

  • Purser, R. J. and Rancic, M., 1998: Smooth quasi-homogeneous gridding of the sphere. Q. J. R. Meteor. Soc., 124, 637–652.

    Article  Google Scholar 

  • Rancic, M., Purser, R. J., and Mesinger, F.,1996: A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Met. Soc., 122, 959–982.

    Google Scholar 

  • Randall, D.A., 1994: Geostrophic adjustment and finite-difference shallow water equations. Mon. Wea. Rev., 122, 1371–1377.

    Article  Google Scholar 

  • Ringler, T.D., Heikes, R.H. and Randall, D.A., 2000: Modeling the atmospheric general circulation using a spherical geodesic grid: A new class of dynamical cores. Mon. Wea. Rev., 128, 2471–2490.

    Article  Google Scholar 

  • Ringler, T.D. and Randall, D.A., 2002a: A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid, Mon. Wea. Rev., 130, 1397–1410.

    Article  Google Scholar 

  • Ringler, T.D. and Randall, D.A., 2002b: The ZM-grid: an alternative to the Z-grid. Mon. Wea. Rev., 130, 1411–1422.

    Article  Google Scholar 

  • Ringler, T.D., Thuburn, J., Klemp, J., and Skamarock, W.C., 2010: A unified approach to energy conservation and potential vorticity dynamics for arbitrarilystructured C-grids. J. Comp. Phys., 229, 2065–2090.

    Article  Google Scholar 

  • Sadourny, R., Arakawa, A., and Mintz, Y., 1968: Integration of the nondivergent barotropic vorticity equation with an icosahedral hexagonal grid for the sphere. Mon. Wea. Rev., 96, 351–356.

    Article  Google Scholar 

  • Sadourny, R., 1969: Numerical integration of the primitive equations on a spherical grid with hexagonal cells. Proceedings of the WMO/IUGG Symposium on Numerical Weather Prediction in Tokyo, Tech. Rep. of JMA, VII45 – VII52.

    Google Scholar 

  • Satoh, M., Tomita, H., Miura, H., Iga, S., and Nasuno, T., 2005: Development of a global cloud resolving model – a multi-scale structure of tropical convections. J. Earth Simulator, 3. 11–19.

    Google Scholar 

  • Skamarock,W. C., Klemp, J.B., Duda, M.G., Fowler, L.D., and Park, S.-H., 2012: A multi-scale nonhydrostatic atmospheric model using centroid Vornoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105.

    Article  Google Scholar 

  • Staniforth, A. and Thuburn, J, 2012; Horizontal grids for global weather and climate prediction models: a review. Q. J. R. Meteorol. Soc., 138, 1–26.

    Article  Google Scholar 

  • Stuhne, G.R. and Peltier, W. R., 1996: Vortex erosion and amalgamation in a new model of large scale flow on the sphere. J. Comput. Phys., 128, 58–81.

    Article  Google Scholar 

  • Stuhne, G.R. and Peltier, W. R., 1999: New icosahedral grid-point discretizations of the shallow water equations on the sphere. J. Comput. Phys., 148, 23–58.

    Article  Google Scholar 

  • Swinbank, R., and Purser, R. J., 2006: Fibonacci grid: A novel approach to global modelling. Q. J. Roy. Met. Soc., 132, 1769–1793.

    Article  Google Scholar 

  • Thuburn, J., 1997: A PV-based shallow-water model on a hexagonal-icosahedral grid. Mon. Wea. Rev., 125, 2328–2347.

    Article  Google Scholar 

  • Thuburn, J., Ringler,W.C., Skamarock,W. C., and Klemp, J.B., 2009: Numerical representation of geostrophic modes on arbitrarily structured C-grids. J. Comp. Phys., 228, 8321–8335.

    Article  Google Scholar 

  • Tomita, H., Tsugawa, M., Satoh, M., and Goto, K., 2001: Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comp. Phys., 174, 579–613.

    Article  Google Scholar 

  • Tomita, H., Satoh, M., and Goto, K., 2002: An optimization of icosahedral grid modified by spring dynamics. J. Comp. Phys., 183, 307–331.

    Article  Google Scholar 

  • Tomita, H. and Satoh, M., 2004: A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34, 357–400.

    Article  Google Scholar 

  • Tomita, H., Goto, K., and Satoh, M., 2008: A new approach of atmospheric general circulation model - Global cloud resolving model NICAM and its computational performance -. SIAM J. Sci. Comput., 30, 2755–2776.

    Article  Google Scholar 

  • Williamson, D. L., 1968: Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus, 20, 642–653.

    Article  Google Scholar 

  • Williamson, D. L., 1970: Integration of the primitive barotropic model over a spherical geodesic grid. Mon. Wea. Rev., 98, 512–520.

    Article  Google Scholar 

  • Williamson, D. L., Drake, J. B., Hack, J. J., Jacob, R., and Swarztrauber, P. N., 1992: A standard test set for numerical approximations to the shallow water equations in spherical geometry. J. Comput. Phys., 102, 211–224.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Satoh, M. (2014). Icosahedral grids. In: Atmospheric Circulation Dynamics and General Circulation Models. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13574-3_25

Download citation

Publish with us

Policies and ethics