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Abstract
Transient ischemic attack (TIA) is defined as a brief episode of neurological dysfunction caused by focal cerebral ischemia. 
TIA is a critical early warning signal of stroke. Patients with TIA may have long-term cognitive decline. The pathogenesis and 
pathological changes of TIA have not been fully elucidated. Animal models can simulate the process of human diseases and 
are essential tools to investigate injury mechanisms and therapeutic approaches of TIA. Most TIA animal models are based 
on ischemic stroke models and the definition of TIA. Each model has unique strengths and weaknesses. The establishment 
of a successful and reliable TIA model should follow three criteria: (1) objective evidence of cerebral arteries occlusion and 
reperfusion, (2) no permanent neurological deficit, and (3) no acute cerebral infarction. However, experimental animal models 
are impossible to be completely consistent with human TIA, because TIA itself is a heterogeneous disease. In the present 
review, the selection of animals, methodological development, and evaluation of cerebral blood flow of animal models of 
TIA are comprehensively evaluated.

Keywords Transient ischemic attack · Animal model · Cerebral blood flow monitoring

Introduction

Transient ischemic attack (TIA) is a brief episode of neu-
rological dysfunction caused by focal brain, spinal cord 
or retina ischemia, without acute cerebral infarction [1]. 
Because of the absence of residual neurological deficits and 
imaging-based evidence of cerebral infarction, TIA was pre-
viously considered a benign cerebral ischemic event. Nev-
ertheless, recently, TIA has been found to be an important 
early warning signal of stroke. Up to 23% of patients with 
ischemic stroke have experienced TIA during the hours to 
days preceding the stroke [2]. Additionally, patients with 
TIA may exhibit long-term cognitive decline, which is a key 
risk factor for dementia [3, 4]. Therefore, the prevention and 

treatment of TIA should not be ignored. However, the actual 
diagnosis and treatment of TIA is not optimal. Studies indi-
cate that the age-standardized incidence of TIA in Europe 
ranges from 28 to 59/100,000/year [5]. Another study reports 
that the age-standardized morbidity rate of TIA in China is 
2.27%, but the diagnostic rate and standardized treatment 
rate are only 16.0% and 4.07%, respectively [6]. To improve 
the diagnosis and treatment strategy of TIA, it is necessary 
to develop an appropriate animal model that can simulate the 
characteristics of human TIA to enable the investigation of 
injury mechanisms, pathological changes and interventions 
for TIA. This review summarizes the selection of animals, 
methodological development and assessment of cerebral 
blood flow in animal models of TIA.

Experimental TIA models

Selection of species

TIA models may involve both small and large animals 
(e.g., mice, rats, guinea pigs, rabbits, pigs, monkeys, and 
baboons), and now most of the TIA modeling are per-
formed in small animals such as mice and rats. There are 
some advantages of utilizing large animals to study TIA. The 
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brains of large animals, especially non-human primates such 
as monkeys and baboons, are similar to the human brain in 
structure and function, which may enable the experimental 
results obtained from large animals to more effectively trans-
late to clinical applications. However, large animal models 
are costly and involve ethical restrictions. It is also difficult 
to establish a stable TIA model in large animals due to col-
lateral circulation and abundant vascular anastomosis [7].

Compared to large animals, the use of small animals pre-
sents distinct advantages, including an accessible supply, 
lower cost, less ethical restrictions, and most of all, the ease 
of replicability. The rat is one of the most commonly used 
animals in TIA studies due to the following advantages: (1) 
its similarities to humans in cerebrovascular structure [8], 
(2) the ability to use neurological and behavioral measure-
ments to evaluate the severity of cerebral ischemic injury 
[9], (3) its moderate body size which facilitates the monitor-
ing of physiologic parameters, and (4) its small brain size 
which allows for in vivo freezing techniques for metabolite 
studies [10]. In addition, since the mouse has an established 
genetic foundation and can be genetically homogeneous, it 
is widely used in transgenic technology studies to further 
explore the molecular pathology of TIA [11, 12]. However, 
there are significant differences between small animals and 
humans in brain structure and function (e.g., size, gray mat-
ter distribution) [13], therefore, the pathological character-
istics of small animal TIA models may differ greatly from 
human TIA.

In addition to animal species, the gender and age of ani-
mals can also affect the experimental results of TIA models. 
Since the estrogen has a neuroprotective effect which can 
alleviate cerebral ischemic injury [14, 15], male animals 
are used in most studies. Older animals exhibit pathological 
changes in the carotid artery, such as vascular tortuosity, 
hardening and lumen stenosis [16], which may confound a 
TIA model. Thus, older animals are typically not used.

Male adult rats are the most commonly used animals 
for the preparation of TIA models, but there is currently 
no unified standard for species selection. Due to the diver-
sity of anatomical structures, functions and physiological 
characteristics of different species, established models differ 
in pathological mechanisms and disease manifestations. In 
practical applications, one should comprehensively consider 
the design, purpose, and funding of a study and try to choose 
economical and available animals with simple structures and 
similar characteristics to human diseases to achieve reliable 
results.

Model selection

TIA animal models are rare in the literature, most of which 
are based on ischemic stroke models and the definition of 
TIA. There is currently a lack of models specifically for 

establishing TIA. In this section, we would like to describe 
all the ischemic models available and present the possibility 
for their use in TIA modelling. Among the ischemic models, 
the middle cerebral artery occlusion (MCAO) is the most 
widely used method for inducing TIA, including craniotomy 
and intraluminal suture models. There are also photothrom-
bosis, endothelin-1, embolic and platelet aggregation models 
(Table 1).

MCAO model

The middle cerebral artery (MCA) is the most frequently 
affected cerebral vessel in human ischemic cerebral vascular 
disease. Therefore, models that occlude this artery have the 
greatest translational potential.

Proximal MCAO model

The proximal MCAO model is also known as the intralu-
minal suture MCAO model, which is currently the most 
common method for TIA modeling. This method involves 
inserting a suture into the internal carotid artery (ICA) and 
advancing it until it blocks the origin of the MCA, caus-
ing a sharp decrease in the blood flow to the frontoparietal 
cortex and striatum. According to the path of the suture into 
the ICA, this model can be divided into two categories: the 
common carotid artery (CCA) approach and the external 
carotid artery (ECA) approach. The CCA approach is rela-
tively simple to perform, but the reperfusion is achieved by 
the blood supply from contralateral cerebral circulation via 
the circle of Willis, which alters cerebral hemodynamics 
[17]. Therefore, the ECA approach is more consistent with 
clinical practice because it retains the anatomical integrity 
required for reperfusion.

The intraluminal suture MCAO model requires no crani-
otomy and is minimally invasive. Its greatest advantage is 
the ability to precisely control the duration of ischemia and 
efficiently initiate reperfusion by withdrawing the suture. 
However, the suture model has several disadvantages. First, 
it is difficult to confirm the success of this model without 
the help of cerebral blood flow (CBF) monitors. Second, the 
suture may interrupt the other branches of the ICA while 
occluding the MCA, resulting in additional ischemic injury. 
Third, the carotid intima may be damaged by the suture 
[18], which can cause thrombosis and affect histopatho-
logical results. Fourth, the cerebral vessels suddenly and 
completely recover recanalization after the suture is with-
drawn, which is inconsistent with the hemodynamic char-
acteristics of TIA patients. Additionally, this model shows 
no response to anticoagulant and antiplatelet therapy [19], 
and thus it is not an ideal model for studying the preven-
tion and treatment measures of TIA. Finally, the reproduc-
ibility of this model is influenced by many factors, such as 
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suture diameter and coating. The insertion length of suture 
also affects the degree of CBF decline, causing different 
ischemic injury. However, in recent years, with the appli-
cation of CBF monitors in the modeling process, the con-
sistency and success rate of this model have been greatly 
enhanced. CBF monitors not only help to avoid insufficient 
ischemia but also reduce the occurrence of complications 
(e.g., subarachnoid hemorrhage).

It is worth noting that the infarct thresholds (the mini-
mum duration of ischemia that can cause cerebral infarc-
tion) vary in different animals used in the suture method of 
TIA. The mechanism for this variation is still unclear and 
may be caused by many factors, including differences in the 
composition of the circle of Willis, the distribution of gray 
and white matter, neuron density and other neuromorpho-
logical features [20]. Furthermore, because of individual 
differences in the formation of collateral circulation, the 
same strain may present different infarct thresholds. Addi-
tionally, the experimental results of the suture method vary 
greatly, and the filament, anesthesia and even the opera-
tion skill will affect the reproducibility of this model. In 
conclusion, the reasons for the different infarct thresholds 
among species need to be further explored. When this 
method is used in a TIA model, a pilot experiment should 
be conducted to clarify the infarct threshold of this animal 
(Table 2).

Distal MCAO model

The distal MCAO model is also referred as the craniotomy 
model. In this model, the MCA is exposed firstly via the 
temporal or orbital route. The distal blood flow of the 
MCA is then temporarily interrupted by microvascular clip 
[21], balloon or blunt micropipette compression [22, 23], 

microsurgical hook lift [24] or suture ligation [25], causing 
the cortical ischemic injury.

The greatest advantage of using this method to establish 
a TIA model is that the different mouse and rat strains cur-
rently studied (including spontaneously hypertensive rats 
[21], Swiss albino mice [22, 23] and Wistar rats [24]) have 
consistent infarct thresholds. Specifically, no cerebral infarc-
tion confirmed by MRI occurs when the MCA is occluded 
for less than 15 min. Thus, when establishing a TIA model 
with this method, one can choose “15 min” for a preliminary 
experiment to further explore the exact infarct threshold. 
Additionally, in this model, the MCA is blocked under direct 
microscope observation, and so it has high reliability, high 
success rate and good repeatability.

The disadvantages of this model mainly relate to inva-
sive craniotomy, which involves the risk of intracranial 
infection, and may cause MCA or cortical tissue damage. 
Furthermore, the procedure requires skilled microsurgery 
techniques. These disadvantages limit the broad application 
of this method in TIA modeling to some extent.

Modified photothrombosis model

This model is based on the principle of intravascular 
photo-oxidation. A light-sensitive dye (e.g., Rose Bengal) 
is injected intravenously or intraperitoneally, and after 
irradiating the exposed skull with the light of a specific 
wavelength, oxygen radicals are generated, which induce 
vascular endothelium damage, platelet aggregation, and 
thrombosis [26], thereby resulting in cortical ischemic 
injury. This method is usually used to model ischemic 
stroke. However, Liu et al. [27] optimized the relevant 
parameters and developed a TIA rat model. They decreased 
the light intensity (5 mW) and reduced the illumination 
duration (3 min), which caused unstable microthrombus 
formation in selected cortical vessels, with CBF dropping 

Table 2  Infarct thresholds of several mouse and rat strains (suture method)

rCBF relative cerebral blood flow, which is the percentage of CBF in the basal CBF
*Infarcts that were confirmed by MRI; as shown in the table, 10 min can be selected for TIA-related study in the pre-experiment

Species, strain rCBF during 
occlusion (%)

Infarct threshold The duration of 
MCAO for TIA model 
(min)

Rat, SD [18] 20 10 min
Hippocampal infarcts were observed in 33.3% (2/6) of rats*

< 5

Rat, Wistar [20] 24 12.5 min
Caudate nucleus infarcts were observed in 16.7% (1/6) of rats*

< 10

Mouse, NMRI [35] 15 12.5 min
Cortical infarcts were observed in 16.7% (1/6) of mice*

< 10

Mouse, ICR-CD1 [36] 15 10 min
Striatal infarcts were observed in 50.0% of mice*

< 10

Mouse, C57BL/6 [37] 34 No infarcts were found in any mice after MCAO for 5 min*
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to 24% of the baseline level. Within 1 to 2 h post-ischemia, 
the thrombus began to dissolve spontaneously. At 4 h post-
ischemia, reperfusion was observed, and the CBF returned 
to 88% of the baseline level, accompanied by the restoration 
of neurovascular function. The whole process was similar 
to clinical TIA. Unfortunately, TTC staining at 24 h showed 
that there were still tiny infarcts in the cortex, which might 
be associated with silent lacunar infarcts, so this model dif-
fers from the clinical definition of TIA, characterized by the 
absence of infarction.

In contrast to the MCAO model, the photothrombo-
sis model can produce ischemic injury in specific brain 
regions. In addition, this model is minimally invasive and 
the survival rate is high. The size and depth of ischemic 
injury can be controlled by adjusting the dye concentra-
tion, light intensity and illumination duration. Further-
more, the process resembles human cerebral thrombosis, 
so this model can be used in the study of antiplatelet, 
anticoagulation and endothelium protection therapy. 
However, the photothrombosis model requires complex 
experimental equipment, and direct damage to brain tis-
sue is a substantial risk, which may influence histopa-
thology results. Another limitation of this model is that 
while the infarct volume of the modified method is sig-
nificantly reduced compared to the traditional method, 
due to thrombosis and the inability to achieve control-
lable reperfusion, the occurrence of cerebral infarction 
cannot be avoided, which is inconsistent with the clinical 
definition of TIA. Therefore, this is not a recommended 
model of TIA.

Endothelin‑1 model

Endothelin-1 (ET-1) is a potent and reversible vasoconstric-
tor peptide which can be used to induce cerebral ischemia 
models. Following stereotaxic intracerebral injection of 
ET-1, CBF is significantly decreased (50%), then recovers 
to baseline levels over several hours [28]. Horie et al. [29] 
injected the same dose of ET-1 into the brain parenchyma 
of SD rats and four different mouse strains, inducing large 
and reproducible lesions in rats, with no lesions in mice. The 
reason for this difference may be the different expression of 
ET-1 receptor isoforms in mice and rats, resulting in dif-
ferent responses of rats and mice to ET-1. As we know, the 
mouse brain is rich in endothelin-B receptor which mediates 
vasodilation, leading to the poor ET-1-mediated cerebral 
vasoconstriction and an inability to induce cerebral infarc-
tion. This is consistent with the pathological characteristics 
of TIA. However, due to the absence of CBF monitoring 
in this study, it is not clear whether effective CBF decline 
occurred after ET-1 injection in the mice. Therefore, further 
investigation to determine whether the mouse ET-1 model 

can be used for TIA-related research is warranted, but at 
present, this model has only been applied to rats.

Compared with the MCAO model, the ET-1 model can 
induce focal ischemia in superficial or deep brain regions, 
with lesions that are more localized and specific. This model 
can also be optimized by adjusting the corresponding param-
eters, such as the dose and infusion mode of ET-1 to con-
trol the severity and duration of ischemia. Importantly, the 
pathological changes of this model are specifically caused 
by ischemic injury rather than inflammatory reactions [28], 
which may be more relevant to clinical TIA pathology. 
However, ET-1 generally causes severe cerebral ischemia 
(except in mice) due to its robust vasoconstrictive effects, 
and induces cerebral infarction. Therefore, strictly speaking, 
this model is not a specific TIA model.

Embolic model

The embolic model can be divided into two categories: 
thromboembolic and non-clot embolic models. In the throm-
boembolic model, a fresh clot is used for the establishment 
of a TIA model, as older clot is resistant to thrombolysis and 
cannot autolysis, which can cause extensive cerebral infarc-
tion. In the non-clot embolic model, a lipid microparticle is 
the most common embolus.

Fresh clot model

Microembolism is considered a major cause of TIA, and thus 
the thromboembolic model has strong face value. Culp et al. 
[30] directly injected fresh clots (1.0 mm length, 0.6 mm 
diameter) into the ICA of rabbits. Angiography revealed that 
the injected clots flowed to the MCA in most rabbits, but 
46% of cases presented incomplete MCA occlusion or no 
visible occlusion. TTC staining found that 60% of cases had 
no infarcts, possibly resulting from prompt autolysis of the 
clots and vascular recanalization, or adequate vasodilation 
or collateral development. This model mimics human TIA 
more closely than other models and is a valuable tool for 
studying TIA-related treatment.

Disadvantages of the thromboembolic model include: (1) 
the distribution of clots in cerebral vessels is indefinite, and 
the volume and location of lesions vary, (2) reperfusion is 
uncontrollable and the duration of ischemia cannot be reli-
ably determined, (3) the rate of intracerebral hemorrhage 
and mortality are high.

Lipid microparticle model

The physicochemical properties of lipid microparticles are 
similar to those of lipid-rich emboli derived from athero-
sclerotic plaques, which are the major source of microem-
bolism, and thus this model also simulates clinical TIA. 
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Based on its characteristics of homogenous sphere appear-
ance and rapid and consistent dissolvability [31], Tsai et al. 
[32] designed a temperature-sensitive solid lipid micropar-
ticle with a melting point approximating body tempera-
ture, which could melt rapidly after being injected into 
the body. After injecting these microparticles into awake 
rats via a carotid artery catheter, the CBF was immediately 
decreased and recovered completely after about 1 h. In the 
result, the rats were divided into neurologic symptom dura-
tions < 24 h, 24 ~ 48 h and ≥ 48 h groups, and the infarct 
volume was different in each group. Among these catego-
ries, the < 24 h group without cerebral infarction could be 
used as TIA model.

Unlike other TIA models, the lipid microparticle model 
can be prepared without anesthesia, which not only avoids 
the influence of anesthetic drugs on the experimental results 
but also allows for the immediate evaluation of the neuro-
logic deficit during TIA and tracking of neurological func-
tion recovery in real time. However, this model has excessive 
variability and its success rate of simulating TIA is low, 
so the application of this model in TIA-related research is 
limited.

Platelet aggregation model

The platelet aggregation model involves the infusion of 
certain agents (e.g., collagen fibril, ADP) into the carotid 
artery, which reversibly causes platelet aggregation and 
platelet thrombosis, eventually inducing transient cerebral 
ischemia. This model also presents significant variability in 
the duration and severity of ischemia.

Collagen fibril model

Fritz et al. [7] infused 0.025 ml/kg collagen fibrils into the 
ICA circulation of baboon via an ECA cannula, producing 
reproducible clinical and EEG features resembling those of 
TIA patients. It was speculated that TIA might result from 
the release of chemical substances from atherosclerotic 
plaques which activated the prostaglandin cascade and led 
to intravascular platelet aggregation. This model success-
fully replicates the EEG features of clinical TIA and can 
be used to explore the mechanism of TIA. However, due to 
the absence of CBF monitoring, neurological assessment 
and imaging examination, its effectiveness as a TIA model 
requires additional investigation.

ADP model

Fieschi et al. [33] successfully developed a rabbit TIA model 
by infusing ADP into the carotid artery. They observed 
platelet thrombosis in the cerebral circulation, reduced CBF, 
and a significant decrease in systemic blood pressure during 

ADP infusion. However, upon cessation of the infusion, the 
platelet thrombi were fragmented and blood pressure was 
quickly restored. Unlike with collagen fibrils, ADP can not 
only promote platelet aggregation but also induce systemic 
hypotension, causing decreased blood flow in the collateral 
circulation and inadequate compensation for ischemia, thus 
exacerbating cerebral ischemia and affecting histopathologi-
cal outcomes. In addition, severe systemic hypotension may 
limit subsequent studies.

Cerebral blood flow monitoring methods

Regardless of the method used to develop a TIA model, it is 
difficult to ensure adequate cerebral ischemia–reperfusion. 
CBF monitoring can not only objectively evaluate the occlu-
sion or recanalization of cerebral arteries, but also determine 
the duration of ischemia, which is an essential tool for pre-
paring and validating a TIA model [34]. Furthermore, by 
monitoring CBF during the establishment of a TIA model, 
the success of the model can be assessed in a timely manner, 
and the validity and reliability of the experimental results 
can be confirmed. Currently, the methods for monitoring 
CBF include laser Doppler flowmeter (LDF) monitoring, 
laser speckle contrast imaging (LSCI), magnetic resonance 
angiography (MRA), iodine-antipyrine autoradiography, and 
hydrogen clearance. Among them, LDF is the most widely 
used method. In addition, new devices such as micro-electro-
corticography-functional photoacoustic microscopy system 
(μECoG-fPAM) and functional ultrasound (fUS) are also 
used. In practice, one should weigh the costs and benefits 
based on experimental needs, species, and modeling meth-
ods, and try to choose an appropriate, simple and convenient 
CBF monitoring method (Table 3).

Conclusion

Animal models can mimic human TIA and are essential 
tools for studying the pathogenesis, pathology and treat-
ment of TIA. However, the basic research on TIA is lim-
ited, and methods are still being developed. According to 
the definition of TIA, the establishment of a successful and 
reliable TIA animal model should follow three criteria [20, 
35]: (1) objective evidence of cerebral arteries occlusion 
and reperfusion, (2) no permanent neurological deficit, (3) 
no acute cerebral infarction. The importance of the first 
criterion is to confirm the occurrence of transient cerebral 
ischemia by monitoring CBF and to promptly exclude the 
animals with inadequate occlusion or inappropriate reperfu-
sion. The necessity of the second and third criterion relies 
on a neurological function test and MRI examination (both 
at 24 h of reperfusion), making animal models more similar 
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to clinical TIA, and these are also the essential differences 
between TIA and ischemic stroke models. In summary, the 
various modeling methods described in this review have 
unique advantages and disadvantages and should be selected 
according to specific experimental objectives. In the future, 
researchers should further optimize these methods based on 
the above standards to develop an optimal TIA model with 

minimal invasiveness, good reproducibility, accessible meth-
ods, and high translational potential.

Funding This study was supported by the National Natural Science 
Foundation of China (Grant No. 81873750) and the Hubei Provincial 
Natural Science Foundation of China (Grant No. 2018CFB115).

Table 3  Comparison of cerebral blood flow monitoring methods in TIA models

LDF laser Doppler flowmeter, CBF cerebral blood flow, LSCI laser speckle contrast imaging, MRA magnetic resonance angiography, μECoG-
fPAM micro-electrocorticography-functional photoacoustic microscopy system, fUS functional ultrasound, CBV cerebral blood volume
*The measurement depth of LDF, μECoG-fPAM and fUS is 1 mm, 3 mm and 8 mm, respectively
# the measurement range of LDF is only 1 mm3

& the measurement width of fUS up to 12.8 mm

Theory Advantages Disadvantages

LDF Laser Doppler frequency deviation Easy operation Limited to the cortical surface measure-
ment*

Low invasiveness Single point  measurement#

High sensitivity Relative measurement value
Ability to monitor CBF quickly, continu-

ously, and in real time
Highly susceptible to environment and 

activities (e.g., indoor light, surgery 
operation, animal breathing)

LSCI Random interference Non-contact Limited to the cortical surface measure-
ment

Minimally invasive Not suitable for monitoring CBF con-
tinuously

Broad measurement range Relative measurement value
High spatio-temporal resolution Requires thinning the skull for animals 

with thick skulls (high technical dif-
ficulty, and not conducive to long-term 
measurement)

Ability to measure multiple microcircula-
tion parameters (e.g., vascular diameter, 
vascular density)

MRA Inflow enhancement effect Noninvasive High requirements on equipment
Ability to display cerebral vessels clearly High cost
Visual observation of cerebral vascular 

occlusion or patency
Inability to monitor CBF in real time

Hydrogen clearance Tracer removal theory Quantitative measurement High invasiveness
High reliability Unable to monitor CBF continuously
Low requirements on equipment

μECoG-fPAM [27] Electrophysiological function and 
microvascular resolution

Ability to monitor blood flow dynamics 
of deep cerebral vessels*

Requires complex equipment

High spatio-temporal resolution Requires a high level of operational skill
Visual observation of cerebral vascular 

morphological changes
fUS [38] Pulse Doppler technology Ability to monitor CBV of deep cerebral 

vessels*
Relative measurement value

Broad measurement  range& Unavoidable measurement error
High spatio-temporal resolution (100 μm 

and 400 ms, respectively)
Partial loss of blood flow data caused by 

the removal of blood vessels with slow 
flow rates

Suitable for real-time monitoring of CBF 
indifferent brain regions

Requires no anesthesia
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