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Abstract Surface processes currently dominate Greenland
ice sheet (GrIS) mass loss. We review recent developments
in the observation and modeling of GrIS surface mass balance
(SMB), published after the July 2012 deadline for the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC AR5). Since IPCC AR5, our understanding of
GrIS SMB has further improved, but new observational and
model studies have also revealed that temporal and spatial
variability of many processes are still poorly quantified and
understood, e.g., bio-albedo, the formation of ice lenses and
their impact on lateral meltwater transport, heterogeneous ver-
tical meltwater transport (‘piping’), the impact of
atmospheric-circulation changes and mixed-phase clouds on
the surface energy balance, and the magnitude of turbulent
heat exchange over rough ice surfaces. As a result, these pro-
cesses are only schematically or not at all included in models
that are currently used to assess and predict future GrIS sur-
face mass loss.
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Introduction

In the Fifth Assessment Report (AR5) of the Intergovernmental
Panel on Climate Change [51], mass loss from the Greenland
ice sheet (GrIS) is discussed in chapter 4 on observed changes
in the cryosphere [108] and chapter 13 on sea level change [13].
In these chapters, results published prior to July 2012 are com-
bined to demonstrate that the GrIS (including its peripheral
glaciers) lost an estimated 2.9 ± 0.5 × 103 Gt of mass between
1991 and 2011, equivalent to ≈ 8 mm of global mean sea level
rise (SLR). Importantly, the annual mass loss rate averaged over
the decade 2002–2011 (214 ± 58 Gt year−1) represented a 6-
fold increase over the preceding decade, followed by a peak
mass loss in 2012 and more moderate losses afterwards, aver-
aging around 200 Gt year−1 [97]. The conclusion in IPCC AR5
that surface mass loss from the GrIS had become the largest
single source of SLR and is likely to remain so for decades to
come, has significantly intensified scientific research in this
field. In this paper, we aim to provide a concise (and therefore
not necessarily complete) summary of post-IPCCAR5 research
on this topic, including results from models and remotely-
sensed/in situ observations. After providing some essential
SMB definitions in the next section, the remaining sections
briefly discuss recent developments and outstanding questions
in each of the following topics:

& Mass loss partitioning, quantifying the relative importance
of surface processes compared to ice dynamics (ice flow
over the grounding line and subsequent basal melt or ice-
berg calving) for recent GrIS mass loss
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& The collection of in situ SMB data, a requirement to eval-
uate and validate SMB models and remotely sensed data,
respectively, and assess their uncertainties

& Historical (twentieth century) SMB reconstructions, to put
the recent surface mass losses from the GrIS in a historical
perspective and assess the role of natural climate
variability

& The impact of large-scale atmospheric circulation var-
iability, specifically the North-Atlantic Oscillation
(NAO), on recent GrIS surface mass loss and whether
recent changes therein are of natural or anthropogenic
origin

& Clouds, radiation, and turbulence, describing how the
large-scale atmospheric circulation impacts surface melt
through clouds, inducing melt at the higher elevations of
the ice sheet, and turbulent sensible heat exchange, impor-
tant for high melt rates of the rough summer ice surface in
the lower ablation zone

& Snow and ice albedo, which determines the fraction of
incoming solar radiation that can be used to warm or melt
the surface

& Firn and supraglacial processes, which determine the frac-
tion of meltwater that refreezes or is stored in perennial
aquifers/lakes before running off the ice sheet

& Developments in earth system modeling specific for GrIS
SMB

These processes cannot be easily ranked for relative im-
portance, which depends on location, time of year, and mete-
orological conditions. Instead, the sections are ordered to al-
low a logical discussion starting with SMB observations (in
situ and reconstructions), then cover processes that affect the
entire ice sheet (synoptic circulation, clouds), continue with
processes that regionally affect melt rate (albedo and turbu-
lence), and end with processes that determine the fate of the
meltwater before it leaves the ice sheet system. We conclude
our synopsis with conclusions and a brief outlook.

Definitions

A thorough understanding of ice sheet mass changes is
rooted in the quantification of individual mass balance
components. This requires the closure of four balances.
First, ice sheet mass balance (MB) is controlled by the
difference between net mass gains at the surface,
expressed by the surface mass balance (SMB), and mass
lost by solid ice discharge across the ice sheet grounding
line (D), integrated over a year. It is often expressed in
Gt year−1 (1 Gt is the mass of 1 km3 of water):

MB ¼ dM=dt ¼ SMB–D Gt yr‐1
� � ð1Þ

Second, the SMB as used here is the sum of all sources and
sinks of mass in the column extending from the ice sheet
surface to the firn/ice interface:

SMB ¼ Ptot–SUtot–ERds–RU Gt yr−1
� � ð2Þ

where Ptot is total precipitation (sum of snowfall (SN) and
rainfall (RA)), SUtot is total sublimation (from the surface
and from drifting snow particles), ERds is erosion of surface
snow by divergence of the drifting snow transport, and RU is
meltwater runoff. SMB in Eq. (2) is also referred to as climatic
mass balance [15], to distinguish it from processes taking
place purely at the surface. Because D is definite positive, a
situation with negative SMB recurring annually makes MB
definite negative and is sometimes referred to as a tipping
point for GrIS mass loss.

Third, to obtain runoff (RU), we must also quantify the
liquid water balance, which we define here as the sum of all
sources and sinks of liquid water in the column extending
from the ice sheet surface to the firn/ice interface:

RU ¼ RAþ COþME–RT–RF Gt yr−1
� � ð3Þ

where RA is rainfall, CO is condensation of water vapor at the
ice sheet surface, ME is surface meltwater production, RT is
retention of liquid water in the snow/firn by capillary forces,
and RF is refreezing of liquid water at or below the surface.

Finally, surface sublimation in (2) and condensation and
melt in (3) depend on the surface energy balance (SEB), the
sum of all energy fluxes towards and away from the surface:

M ¼ SWin þ SWout þ LWin þ LWout þ SHFþ LHFþ Gs

¼ SWin 1–αð Þ þ LWin–σTs
4 þ SHFþ LHFþ Gs W m−2� � ð4Þ

whereM is melt energy, SWand LWare shortwave (solar) and
longwave (terrestrial) radiation fluxes, respectively, SHF and
LHF are the turbulent surface fluxes of sensible and latent
heat,Gs is the subsurface (conductive) heat flux, α the surface
broadband albedo, σ the constant of Stefan Boltzmann
(σ = 5.67 × 10−8 W m−2 K−4), and Ts snow/ice surface (skin)
temperature. In Eq. 4, it is assumed that the surface emissivity
for longwave radiation equals unity and that no shortwave
radiation penetrates below the snow/ice surface, in which
case, the SEB can be solved by iteratively searching a value
of Ts for which the SEB is closed. When Ts > 0 °C, it is reset to
0 °C and the residual energy is invested in melting (M > 0).

The accumulation and ablation zones of an ice sheet are
defined as the areas where (local) surface mass balance
(expressed in mm w.e. year−1 or kg m−2 year−1) is positive
and negative, respectively (blue and red areas in Fig. 1).
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These two zones are separated by the equilibrium line, where
SMB = 0.

Surface Mass Balance Contribution to Ice Sheet
Mass Loss

Before exploring the contribution of surface processes to recent
GrIS mass loss, it is instructive to list the typical magnitude of
individual SMB components for a period during which the con-
temporary ice sheet was in approximate balance. Two recent
compilations of GrIS MB studies suggest that this was the case
during the early 1990s [42, 52]. Independent estimates ofD from
radar interferometry and feature tracking [30] and SMB from
regional climate modeling [104] seem to confirm that discharge
in the mid-1990s was similar to average SMB during the pre-
ceding decades (1960s to 1980s), reminiscent of ice flow that has
adjusted to SMB forcing (Fig. 2). For the climatological period
1961–1990, modeled total annual precipitation on the ice sheet
Ptot averaged ≈ 700 Gt year−1, SUtot ≈ 40 Gt year−1,
RU ≈ 260 Gt year−1, and ERds ≈ 0, resulting in
SMB ≈ 400 ± 70Gt year−1 [104]. The SMB uncertainty estimate
is based on a comparison with SMB observations from the ac-
cumulation and ablation zones [75, 76]. Combined with the
estimated 1996 value for discharge D ≈ 410 ± 20 Gt year−1

[30], this yields a near-zero GrIS mass balance (SMB−D), but
we also note that the large uncertaintymargins leave ample room
for an undetected mass imbalance in this period, as was previ-
ously suggested [87].

A significant summer warming of ≈ 2 °C since the early
1990s [4, 41] increased RU by more than 40% while precip-
itation and sublimation did not appreciably change;

meanwhile—although not directly affecting RU—winter tem-
peratures along the west coast of Greenland increased by
around 5 °C ([41], updated analysis). D also increased in a
spatially and temporally complex way [22], to stabilize in
2010 at an ≈ 30% elevated level (Fig. 2). This resulted in a
2011–2015 average GrIS mass loss in excess of 300 Gt year−1

(± 30%, Fig. 2), a substantial imbalance of 45% when com-
pared to the average annual mass gain by accumulation
(Ptot−SUtot). Using long-term (1991–2015) trends to perform
the partitioning, 61% of the recent mass loss can be ascribed to
the decrease in SMB and the remainder to the increase in D
([104], Fig. 2). Shorter-term periods confirm this dominance
of SMB in forcing recent GrIS mass loss: Enderlin et al. [30]
show that between 2000 and 2005, the increase in discharge
accounted for 58% of the mass loss, decreasing to 36% be-
tween 2005 and 2009 and 32% between 2009 and 2012.
Although important locally, ice-sheet integrated sublimation
and erosion are relatively constant from year to year, and
therefore do not contribute significantly to mass trends [61].
In the remainder of this paper, we focus on SMB processes
that have dominated GrIS mass loss in recent decades, i.e.,
melt and runoff.

Surface Mass Balance Observations for Model
Evaluation

The scarce in situ observations provide insufficient coverage
to produce detailed GrIS SMBmaps in space and time. That is
why (regional) climate models are often used to produce these
maps. In situ observations remain essential for assessing and
minimizing the uncertainties in modeled GrIS SMB products.

−

Fig. 1 Maps of modeled GrIS SMB at horizontal resolutions of ~ 100 km, using a global climate model (left, [106]), ~ 10 km using dynamical
downscaling with a regional climate model (middle, [73]), and of 1 km, using statistical downscaling (right, [74])
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The use of inaccurate and/or different ice masks and elevation
models has so far prevented a fully comprehensive intercom-
parison of gridded GrIS SMB products, although some useful
preliminary work has been undertaken [109]. Recently, the
Randolph Glacier Inventory [81] and Greenland Ice
Mapping Project (GIMP, [49]) have yielded high-resolution
digital elevation models (DEMs) and glacier outlines of the
GrIS and its peripheral glaciers and ice caps (GICs), including
floating sections, representing improved boundary conditions
for numerical modeling and statistical downscaling.

Another recent milestone for model evaluation is the
compilation of historical Greenland ablation measure-
ments [65], providing important constraints on GrIS mar-
ginal ablation and runoff. A similarly important develop-
ment is the observation of snow accumulation using ra-
dar operated from airplanes [55, 63, 80], strongly im-
proving the coverage of observed SMB in the GrIS ac-
cumulation zone. This is especially important because of
previously reported large discrepancies in absolute values
of GrIS accumulation [2, 9, 40].

Currently available gridded SMB fields from regional cli-
mate models (RCMs, e.g., Fig. 1b) and statistically down-
scaled atmospheric reanalyses in general agree reasonably
well with these observations [33, 36, 58, 64, 73, 75, 76,
112], but marginal outlet glaciers and peripheral ice caps re-
main poorly resolved at resolutions lower than ~ 1 km [102].
For instance, when statistically downscaling RCM output
from 11 to 1 km and using realistic ice albedo values for
narrow and often relatively dark glacier tongues, Noël et al.
[74] found a runoff increase of up to 30% (Fig. 1c). The
significant correlation often reported for modeled SMB prod-
ucts on 5–20 km resolutions is therefore likely to be at least in
part caused by compensating errors (e.g., a combination of
underestimated snowfall and underestimated runoff), so that
for now, the relatively large (± 20%) uncertainty in GrIS inte-
grated SMB values remains.

Twentieth Century Greenland Ice Sheet Surface
Mass Changes

To assess its historical significance, it is useful to compare
contemporary GrIS surface mass loss with historical SMB
reconstructions. Here, we define “historical” as twentieth cen-
tury but pre-1957/58, the International Geophysical Year
(IGY) from which time onwards, reliable atmospheric reanal-
ysis data are available for the Northern Hemisphere, e.g., the
European Centre for Medium-Range Weather Forecasts
(ECMWF) 40-year Reanalysis (ERA-40, [100]) and the
ECMWF Interim Reanalysis (ERA-I) for 1979–present [25].

Wilton et al. [112] statistically downscaled the Twentieth
Century Reanalysis (20CR), based on the National Center for
Environmental Predictions (NCEP) Global Forecast System
(GFS) model [17], before 1979 and ERA-I from 1979 on-
wards, to calculate GrIS SMB for the period 1870–2012 on
a 1-km grid, thereby improving upon the 5-km product of
Hanna et al. [40]. Apart from the increase in runoff and asso-
ciated drop in SMB since ≈ 1995, their reconstruction reports
importantly higher (≈ 15%) precipitation and lower (≈ 20%)
runoff values in the pre-IGY period, resulting in up to ≈ 40%
higher SMB values compared to the 5-km product. Box [4]
uses a combination of accumulation derived from ice cores,
regional climate model output and temperature observations
from manned coastal stations to reconstruct GrIS SMB be-
tween 1840 and 2010. They find significant differences with
the reconstruction of Hanna et al. [40] for their overlapping
period (1871–2008), with lower historical values and no
(negative) trend in SMB.

Fettweis et al. [33] forced the regional model MAR with
two historical reanalysis data sets (ERA-20c, 20CRv2); they
found GrIS SMB values that are lower than in Box [4] before
1945 but agree well after that, resulting in a generally positive
SMB trend through the first half of the last century, mainly due
to an accumulation increase. These results qualitatively agree
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with Kjeldsen et al. [53], who used historical aerial photogra-
phy to assess twentieth century GrIS mass loss and found on
average 52 Gt year−1 lower SMB values for the period 1900–
1983 than in 1983–2003, although this difference falls within
the estimated uncertainties.

We conclude that the results of these studies are not suffi-
ciently similar to draw firm conclusions about the pre-IGY
evolution of GrIS SMB and therefore cannot be used to assess
the historical significance of contemporary (post-1990) sur-
face mass losses.

Large-Scale Atmospheric Circulation

Changes in Greenland summer near surface air temperature
are caused by changes in the local heat balance of the atmo-
sphere, including vertical mixing in the boundary layer and
radiative heat exchange by greenhouse gases, and also by
variability in the direction and strength of the regional/large-
scale atmospheric circulation in combination with regional
temperature gradients. Fettweis et al. [32] used a circulation
type classification to show that since 2003, phases with a
negative North Atlantic Oscillation (NAO) index occurred
more frequently in summer, leading to increased northward
transport of warm air to west Greenland, explaining an esti-
mated 70% of the recent summer warming. Mioduszewski
et al. [70] developed a summer Arctic synoptic climatology
by applying self-organizing maps to daily 500-hPa
geopotential height fields of the Modern Era Retrospective
Analysis for Research and Applications reanalysis
(MERRA, 1979–2014). The study confirms that the largest
positive GrIS melt anomalies occur in concert with strong
northward transport of heat and moisture. A third study con-
firms this by showing that recent increases in GrIS summer
melt occurred synchronously with a significant upward trend
in the Greenland Blocking Index in summer, representing in-
creased high-pressure blocking over Greenland and warm air
advection (Fig. 3, [44]). In July 2012, this circulation anomaly
and associated melt-albedo feedback (see “Albedo” section)
culminated in an exceptional melt event, in which almost the
entire ice sheet surface experienced at least some melt [43,
72]; the associated runoff peak in west Greenland destroyed
infrastructure that had been in place since the 1950s.

Ding et al. [26] indicate that the circulation anomaly de-
scribed above originates in the tropical Pacific and that it like-
ly reflects natural decadal variability, which may also have a
negative impact on sea ice cover in the Arctic Ocean [27]. This
hypothesis may be supported by the absence of persistent
negative summertime NAO anomalies in future projections
by CMIP5 models [32, 37], although there are deficiencies
in North Atlantic jet stream representation in the climate
models that make future NAO projections inconsistent and
unreliable [38, 39]. Recent atmospheric circulation anomalies

over Greenland in summer could also have been triggered by
the Arctic Amplification of global warming, which may have
produced a more meandering jet stream flow and increased
blocking over Greenland during the last decade [44, 77–79,
98]. This pronounced variability and possible sustained forc-
ing of the large-scale circulation and therefore SMB imposes
severe limits on the unambiguous detection of long-term GrIS
mass loss acceleration [113] that can reliably be attributed to
anthropogenic climate change. This is despite Greenland be-
ing one of the hotspots of recent global warming since the
early 1990s.

Clouds, Radiation, and Turbulence

Melt rate at the surface of the GrIS is determined by the sur-
face energy balance (SEB, Eq. 4). This implies that models
that assess present-day and predict future GrIS surface melt
rates must preferably explicitly calculate the individual SEB
components. In turn, these models must be evaluated with as
many as possible in situ SEB observations, to assess whether
the partitioning of melt energy, and therefore the sensitivity of
melt to changing atmospheric/surface conditions is correctly
represented [62, 73, 75, 76]. An accurate observational esti-
mate of melt energy requires dedicated experiments or auto-
matic weather stations (AWS) that are operated at the ice sheet
surface and measure all relevant parameters (including all ra-
diation fluxes) sufficiently accurately to close the SEB and
calculate melt energy as a residual; such stations are, e.g.,
operated at Summit and Swiss Camp by GC-Net [20], in the
PROMICE network [14], and along the K-transect in west
Greenland [57, 90].

Apart from evaluation purposes, in situ SEB data them-
selves also lead to discovery. For instance, AWS data revealed
that occasional melt on the highest parts of the GrIS is espe-
cially sensitive to the optical thickness, emissivity, and phase
(ice, water, or mixed) of clouds [3, 107] mainly enhancing
incoming longwave radiation. In contrast, melt variability in
the low-albedo ablation zones is mainly driven by incoming
solar radiation (Box and others, 2012), highlighting the com-
plex role of cloud changes on GrIS SMB. Recent results indi-
cate that a decrease in summer cloud cover driven by the
above-mentioned increased blocking has largely driven in-
creased SMB losses over the last two decades [47].

Another recent finding is the dominant contribution of tur-
bulent sensible heat fluxes to melt energy during strong melt
events along the GrIS margins. Neither climate models [73]
nor calculations from weather stations [31] reproduce these
melt peaks well, which may be associated with the breakdown
of turbulence parameterizations under these conditions or the
fact that narrow boundary-layer jets (so-called barrier winds),
driven by the temperature contrast between tundra and ice
sheet, are poorly resolved. This is highly relevant, as it is
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expected that these conditions will occur more frequently
when the GrIS retreats onto land and more tundra is exposed.
What may improve the simulation of turbulent energy fluxes
is a more realistic 2D field of surface aerodynamic roughness
[91], rather than prescribing a single constant value for snow
and ice.

Albedo

When integrated over the year, absorbed shortwave radiation
is the dominant source for melt energy at the GrIS surface [6,
57] and can even be used as predictor for GrIS mass balance
[16]. The absorbed (or “net”) shortwave radiation is deter-
mined to first order by the shortwave reflectivity or albedo
of the ice/snow surface, a very sensitive variable when model-
ing GrIS SMB [75, 76, 101]. In the absence of impurities,
albedo ranges from over 0.85 for freshly deposited dry, fine-
grained snow, to 0.7 for wet snow, and to below 0.55 for bare
glacier ice. This means that the presence/absence of snow at
the surface represents a factor of three differences in absorbed
solar energy.

GrIS surface albedo variability can be determined from
optical satellite remote sensing and ground observations.
The ground data come from 3 to 5-m high masts that often
contain errors from sensor tilt for which corrections [111] and
quality assurance schemes ([5]) exist. In areas with heteroge-
neous surfaces, e.g., fractional snow cover, the in situ obser-
vation of albedo with a small footprint is not always

representative of the much greater area observed by the satel-
lite; unmanned airborne vehicles (UAV’s) may be deployed to
understand this spatial scale gap [88].

Over bare ice, the accumulation of impurities (soot, dust,
microbiological material) can decrease albedo to values below
0.3, further enhancing ablation rates during summer (Fig. 4).
Estimates of the radiative impact due to algae growing at the
ice sheet surface indicate that bare ice albedo is reduced more
by algal growth than non-algal impurities including dust [71,
94], warranting the inclusion of this process in ice albedo
models [18, 19].

Over snow, a powerful positive feedback exists between
melt and albedo: snow grains grow rapidly when they get
wet, enhancing forward scattering and absorption in the snow-
pack, significantly reducing the albedo, especially in the near-
infrared part of the spectrum. When broadband snow albedo
during melt decreases from 0.85 to 0.70 (e.g., [12]), this dou-
bles the absorption of shortwave radiation, which in turn in-
creases snow grain metamorphism, further darkening the
snow, further enhancing melt. Because > 90% of the GrIS is
snow covered, this process is highly relevant in a warming
climate. The ultimate impact of the albedo melt feedback is
modulated by clouds and further depends on the duration of
the amplification process. Upon accumulation of fresh snow,
albedo is reset to the fresh snow value.

Following the recent lengthening of the melt season over
the snow-covered part of the GrIS, one would expect a decad-
al albedo decline. Indeed, from moderate-resolution imaging
spectroradiometer (MODIS) satellite retrievals, available

Fig. 3 Average (red contours)
and summer 2012 (June, July,
August) 700 hPa height (blue
contours), wind anomaly (blue
arrows), and temperature
anomaly (°C) from ERA-Interim
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since 2000/2002 from the NASATerra/Aqua satellites, respec-
tively, multiple recent studies reported a decadal darkening of
the GrIS surface [1, 6, 29, 95, 99]. At higher latitudes, part of
this trend has been attributed to MODIS sensor degradation
[10, 84], which is corrected for in the latestMODIS Collection
6 product; the latter suggests a −1.2+/−0.9% summer seasonal
albedo reduction between 2000 to 2017 (Fig. 4; [7, 99]).
While at the full scale of the ice sheet, the albedo trend from
2000 to 2017 is hardly statistically significant, across much of
the ice sheet ablation area, the local 18-year trend exceeds
both the stated accuracy of the MODIS Collection 6 product
and the standard error of the trend fits (Fig. 4). The ablation
area albedo reduction results from some combination of re-
duced snow covered area and duration and biological darken-
ing. The trend remains despite low melt or high snow cover
years like in 2013 and 2017, respectively.

Firn Processes

Firn, the up to ~ 100-m thick layer of compressed snow that
covers > 90% of the GrIS, plays a pivotal role in the response
of the GrIS SMB to atmospheric warming. It acts as an effi-
cient buffer for meltwater that is produced at the surface [45];
models estimate that Greenland’s lower peripheral ice caps
have lost most of their refreezing capacity [75, 76], but that
for the highly elevated GrIS, about 45% of the meltwater is
still retained in the firn layer, either by capillary forces or by
refreezing [92]. This vertical meltwater penetration occurs in a
heterogeneous fashion, bypassing dry and cold layers through
“pipes” [50]. Upon refreezing, the release of latent heat can
warm the firn layer in the lower accumulation zone by more

than 10 °C when compared to the annual mean surface tem-
perature [67]; the gradual increase in GrIS melt can be tracked
from the observation of decadal firn warming [21, 83]. Ice
lenses that form as a result of refreezing decrease permeability
and firn storage of meltwater, limiting the availability of the
deeper pore space for meltwater storage and enhancing lateral
runoff [66]. The combination of high accumulation rates and
strong summer melting found in the southeast and northwest
of the GrIS leads to the formation of perennial firn aquifers
occupying ~4% of the conterminous ice sheet area with an
estimated mass of 140 ± 20 Gt [35, 54, 56, 68]. The firn
aquifer was found to exit the south eastern ice sheet via cre-
vasses [82].

Supraglacial Meltwater Retention and Runoff

The hypsometry of the ice sheet with its steep margins and flat
interior results in a rapid increase in melt area when melt
reaches higher elevations (Mikkelsen and others, 2016). Van
As et al. [103] show that the ice sheet’s concave hypsometry
adds ~ 60% runoff to a hypothetical linearly sloping surface.
In response to excessive meltwater production in recent warm
summers, the distribution of supraglacial lakes on the
Greenland ice sheet has migrated upglacier [34, 48] and is
even predicted to extend further to elevations of 2000m asl
in 2100 [60]. During the record melt years of 2010 and 2012,
lakes formed and drained earlier, attaining their maximum
volume 38 and 20 days earlier than the 11-year average, re-
spectively, as well as occupying a greater area and forming at
higher elevations (> 1800m asl) than previously. Clustering of
drainage events in space and time suggests a trigger

Fig. 4 Left: map of summer
(June, July, August) MODIS
Collection 6 albedo change
between 2000 and 2017 (from
regression, unitless) for
Greenland glaciated areas with
results shown only where the
change exceeds one standard
error of the regression fit (data
processed after [6–7]). Right:
photo of impurity rich bare ice
surface at the south Greenland
QAS_L PROMICE.dk climate
station where surface albedo
reaches a minimum of 0.20 in
summer (photo J. Box)
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mechanism that is dynamically driven by basal slip [93]. The
majority of fast lake drainages occur in the southwestern sec-
tor of the ice sheet, and fewer are observed in regions with
significant dynamic mass loss [89]. The lakes absorb more
solar radiation than the ice surface causing a 10–35% increase
in ice surface ablation rates relative to surrounding bare ice
areas [96], which is likely to enhance the development of lake
basins on the ice surface. Rapid lake drainage occurs in a few
hours [28], producing kilometer-long fractures that may trig-
ger further localized lake drainage [34]. The time between
meltwater generation and its discharge at the ice sheet margin
can be in excess of 1 week, depending on proximity to the ice
sheet margin, abundance of supraglacial lakes, and hydraulic
efficiency of the subglacial drainage system [11, 85, 103].

Global Reanalyses and Earth System Models

Global reanalysis datasets and earth system models (ESMs)
provide 4D representations of the global coupled climate sys-
tem and are therefore especially suitable for diagnosing and
predicting the past, present, and future state of GrIS surface
processes. However, the standard horizontal resolution of
these (typically 30–100 km) is currently too coarse to properly
resolve the GrIS ablation zone and its steep coastal topogra-
phy, which induces orographic precipitation (Fig. 1a).
Nonetheless, with increasing availability of remotely-sensed
and in-situ observations to improve sub-grid parameteriza-
tions, and more computing power to increase resolution, the
outlook for GrIS SMB modeling as part of global models is
promising. A new generation of variable-resolution ESMs
[86] could further accelerate their application.

For these reasons, priority should be given to further im-
prove the parameterization of ice sheet surface processes in
ESMs and assimilation systems, current examples include
EC-Earth [46] and CESM [59, 106, 110], and to carry out
inter-comparison projects for ESM land surface modules
[105]. These efforts directly benefit the representation of ice
sheet processes in global/regional reanalysis products, e.g., the
Arctic System reanalysis [8] and the Modern-Era
Retrospective analysis for Research and Applications, version
2 (MERRA-2, [24]), based on the Goddard Earth Observing
System Data Assimilation System Version 5 (GEOS-5, [23]).

Conclusions and Outlook

The Greenland ice sheet (GrIS) has experienced significant
mass losses since the early 1990s and currently represents
the largest single contributor to ongoing mean sea level rise.
The mass loss is dominated by a decrease in the surface mass
balance (SMB), i.e., the sum of mass fluxes towards (mainly
snowfall) and away from (mainly meltwater runoff) the

surface. In this paper, we review results of recent (post IPCC
AR5) research results in the field of GrIS SMB processes.

Since IPCC AR5, the powerful combination of remote
sensing, in situ observations, and dynamical/statistical region-
al climate modeling has yielded many new discoveries and
insights into the workings of GrIS surface processes and
how these have contributed to recent GrIS mass changes. It
is clear that robust predictions of future GrIS surface mass loss
can only be made using models that explicitly simulate large-
scale circulation changes in the Arctic and that include param-
eterizations of newly discovered processes. Many of these are
currently not or not well represented, such as bio-albedo, ice
lenses and lateral meltwater transport, heterogeneous vertical
meltwater transport, mixed-phase clouds, and turbulent heat
exchange over rough ice surfaces.

Upon inclusion of these processes in model simulations of
Greenland climate and SMB and with further development of
modeling techniques, we deem it possible to halve the current
uncertainty in accumulation/ablation of ~ 10/20 to ~ 5/10% in
the coming decade. This will significantly reduce the uncer-
tainty in SMB and improve the accuracy of predictions of
future GrIS mass loss.
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