Skip to main content

Imprinting and X-Chromosome Inactivation

  • Chapter
Genomic Imprinting

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

In normal female mammals one of the two X-chromosomes in every somatic cell is inactive i.e. it fails to transcribe RNA (reviews Gartler et al. 1992; Migeon 1994; Lyon 1996). The result of this is that chromosomally XX females and XY males both effectively have a single dosage of the products of X-linked genes. Thus X-chromosome inactivation fulfils the function of dosage compensation of X-linked genes. In eutherian mammals, typically either one of the two X-chromosomes in any cell, the maternally inherited Xm or the paternally inherited Xp, can be inactivated at random. Once the choice is made in each cell, it remains stable in all further cell generations in that individual and hence in the adult there are large clumps of cells with the same X-chromosome active. If the two X-chromosomes bear different alleles of a gene affecting some visible character, such as coat color, the clumps can be seen as a variegated effect. The best-known example of this is the tortoiseshell cat, in which the pattern results from the animal having a gene for ginger coat on one X-chromosome and black or tabby on the other. However, by contrast, in marsupials the same X-chromosome, the paternally derived Xp, becomes inactive in all cells (Cooper et al. 1993; Graves 1996). This preferential inactivation of Xp is seen also in some cells of the extraembryonic lineages of the embryo, which give rise to the placenta and other supporting tissues, in mice and rats (Takagi and Sasaki 1975), and probably, but less clearly, in humans also (Harrison 1989; Goto et al. 1997). Thus, in marsupials and in extraembryonic tissues of eutherians, the X-chromosome shows imprinting (Fig. 1). This imprinting has some similarities and some differences from autosomal imprinting. In order to understand the significance of imprinting in X-chromosome inactivation one must consider the mechanism by which the inactivation is brought about.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ariel M, Robinson E, McCarrey JR, Cedar H (1995) Gamete-specific methylation correlates with imprinting of the murine Xist gene. Nat Genet 9: 312–315

    Article  PubMed  CAS  Google Scholar 

  • Ayoub N, Richter C, Wahrman J (1997) Xist RNA is associated with the transcriptionally inactive XY body in mammalian male meiosis. Chromosoma 106: 1–10

    Google Scholar 

  • Baker BS, Gorman M, Marin I (1994) Dosage compensation in Drosophila. Annu Rev Genet 28: 491–521

    Article  PubMed  CAS  Google Scholar 

  • Beard C, Li E, Jaenisch R (1995) Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 9: 2325–2334

    Article  PubMed  CAS  Google Scholar 

  • Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D, Capra V, Grompe M, Pizzuti A, Muzny D, Lawrence C, Willard HF, Avner P, Ballabio A (1991) Characterization of a murine gene expressed from the inactive X chromosome. Nature 351: 325–329

    Article  PubMed  CAS  Google Scholar 

  • Boyle AL, Ballard SG, Ward DC (1990) Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc Natl Acad Sci 87: 7757–7761

    Article  PubMed  CAS  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, McCabe VM, Norris DP, Penny GD, Patel D, Rastan S (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351: 329–351

    Article  PubMed  CAS  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992)The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71: 515–526

    Google Scholar 

  • Brown CJ, Willard HF (1994) The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature 368: 154–156

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349: 33–44

    Google Scholar 

  • Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, Willard HF (1992) The human XIST gene: analysis of a 17-kb inactive X-specific RNA that contains conserved repeats and is highly localised within the nucleus. Cell 71: 527–542

    Article  PubMed  CAS  Google Scholar 

  • Buzin CH, Mann JR, Singer-Sam J (1994) Quantitative RT-PCR assays show Xist RNA levels are low in mouse female adult tissue, embryos and embryoid bodies. Development 120: 3529–3536

    PubMed  CAS  Google Scholar 

  • Cattanach BM, Beechey CV (1990) Autosomal and X-chromosome imprinting. Development Suppl: 63–72

    Google Scholar 

  • Clemson CM, McNeil JA, Willard H, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132: 259–275

    Google Scholar 

  • Cooper DW, Johnston PG, Watson JM, Graves JAM (1993) X-inactivation in marsupials and monotremes. Sem in Dev Biol 4: 117–128

    Article  Google Scholar 

  • Courtier B, Heard E, Avner P (1995) Xce haplotypes show modified methylation in a region of the active X chromosome lying 3’ to Xist. Proc Natl Acad Sci 92: 3531–3535

    Google Scholar 

  • Daniels R, Zuccotti M, Kinis T, Serhal P, Monk M (1997) XIST expression in human oocytes and preimplantation embryos. Am J Hum Genet 61: 33–39

    Google Scholar 

  • Endo S, Takagi N (1981) A preliminary cytogenetic study of X chromosome inactivation in diploid parthenogenetic embryos from LT/Sv mice. Jpn J Genet 56: 349–356

    Article  CAS  Google Scholar 

  • Gartler SM, Riggs AD (1983) Mammalian X-chromosome inactivation. Annu Rev Genet 17: 155–190

    Article  PubMed  CAS  Google Scholar 

  • Gartler SM, Dyer KA, Goldman MA (1992) Mammalian X-chromosome inactivation. In: Friedmann T (ed) Molecular genetic medicine. Academic Press, New York vol 2. pp 121–160

    Google Scholar 

  • Goto T, Wright E, Monk M (1997) Paternal X-chromosome inactivation in human trophoblastic cells. Mol Hum Reprod 3: 77–80

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM (1996) Mammals that break the rules: genetics of marsupials and monotremes. Annu Rev Genet 30: 233–260

    Article  PubMed  CAS  Google Scholar 

  • Hansen RS, Canfield TK, Fjeld AD, Gartler SM (1996) Role of late replication timing in the silencing of X-linked genes. Hum Mol Genet 5: 1345–1353

    Article  PubMed  CAS  Google Scholar 

  • Harrison KB (1989) X-chromosome inactivation in the human cytotrophoblast. Cytogenet Cell Genet 52: 37–41

    Article  PubMed  CAS  Google Scholar 

  • Hendrich BD, Brown CJ, Willard HF (1993) Evolutionary conservation of possible functional domains of the human and murine XIST genes. Hum Mol Genet 2: 663–672

    Article  PubMed  CAS  Google Scholar 

  • Herzing LBK, Romer JT, Horn JM, Ashworth A (1997) Xist has properties of the X-chromosome inactivation centre. Nature 386: 272–275

    Google Scholar 

  • Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74: 281–289

    Article  PubMed  CAS  Google Scholar 

  • Johnston PG, Cattanach BM (1981) Controlling elements in the mouse IV. Evidence of nonrandom X-inactivation. Genet Res 37: 151–160

    Google Scholar 

  • Kay GF, Penny GD, Patel D, Ashworth A, Brockdorff N, Rastan S (1993) Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72: 171–182

    Article  PubMed  CAS  Google Scholar 

  • Kay GF, Barton SC, Surani MA, Rastan S (1994) Imprinting and X chromosome counting mechanisms determine Xist expression in early mouse development. Cell 77: 639–650

    Article  PubMed  CAS  Google Scholar 

  • Kuroda MI, Meller VH (1997) Transient Xist-ence. Cell 91: 9–11

    Article  PubMed  CAS  Google Scholar 

  • Latham KE, Rambhatla L (1995) Expression of X-linked genes in androgenetic, gynogenetic, and normal mouse preimplantation embryos. Dev Genet 17: 212–222

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Jaenisch R (1997) Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386: 275–279

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Strauss WM, Dausman JA, Jaenisch R (1996) A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86: 83–94

    Article  PubMed  CAS  Google Scholar 

  • Leighton PA, Ingram RS, Eggenschwiler J, Efstriadis A, Tilghman SM (1995) Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375: 34–39

    Article  PubMed  CAS  Google Scholar 

  • Lifschytz E, Lindsley DL (1972) The role of X-chromosome inactivation during spermatogenesis. Proc Natl Acad Sci 69: 182–186

    Article  PubMed  CAS  Google Scholar 

  • Luo S, Torchia BS, Migeon BR (1995) XIST expression is repressed when X inactivation is reversed in human placental cells: a model for study of XIST regulation. Somat Cell Mol Genet 21: 51–60

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1993) Epigenetic inheritance in mammals. Trends Genet 9: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Lyon MF (1996) Molecular genetics of X-chromosome inactivation. Adv Genome Biol 4: 119–151

    Article  Google Scholar 

  • Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11: 156–166

    Article  PubMed  CAS  Google Scholar 

  • McBurney M (1988) X chromosome inactivation: a hypothesis. Bio Essays 9: 85–88

    CAS  Google Scholar 

  • McCarrey JR, Dilworth DD (1992) Expression of Xist in mouse germ cells correlates with X-chromosome inactivation. Nat Genet 2: 200–203

    Article  PubMed  CAS  Google Scholar 

  • Migeon BR (1994) X-chromosome inactivation: molecular mechanisms and genetic consequences. Trends Genet 10: 230–235

    Article  PubMed  CAS  Google Scholar 

  • Mise N, Sado T, Tada M, Takada S, Takagi N (1996) Activation of the inactive X chromosome induced by cell fusion between a murine EC and female somatic cell accompanies reproducible changes in methylation pattern of the Xist gene. Exp Cell Res 223: 193–202

    Article  PubMed  CAS  Google Scholar 

  • Norris DP, Patel D, Kay GF, Penny GD, Brockdorff N, Sheardown SA, Rastan S (1994) Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77: 41–51

    Article  PubMed  CAS  Google Scholar 

  • Panning B, Jaenisch R (1996) DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev 10: 1991–2002

    Article  PubMed  CAS  Google Scholar 

  • Panning B, Dausman J, Jaenisch R (1997) X chromosome inactivation is mediated by Xist RNA stabilization. Cell 90: 907–916

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou VE, West JD (1981) Relationships between the parental origin of the X chromosomes, embryonic cell lineage and X chromosome expression in mice. Genet Res Camb 37: 183–197

    Article  CAS  Google Scholar 

  • Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379: 131–137

    Article  PubMed  CAS  Google Scholar 

  • Plenge RM, Hendrich BD, Schwartz C, Arena JF, Naumova A, Sapienza C, Winter RM, Willard HF (1997) A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet 17: 353–356

    Article  PubMed  CAS  Google Scholar 

  • Rack KA, Chelly J, Gibbons RI, Rider S, Benjamin D, Lafrenière RG, Oscier D, Hendriks RW, Craig IW, Willard HF, Monaco AP, Buckle VJ (1994) Absence of the XIST gene from late-replicating isodicentric X chromosomes in leukaemia. Hum Mol Genet 3: 1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Rastan S (1983) Non-random X-chromosome inactivation in mouse X-autosome translocation embryos — location of the inactivation centre. J Embryol Exp Morphol 78: 1–22

    PubMed  CAS  Google Scholar 

  • Rastan S (1994) X chromosome inactivation and the Xist gene. Curr Opin Genet Dev 4:292–297 Rastan S, Brown SDM ( 1990 ) The search for the mouse X-chromosome inactivation centre. Genet

    Google Scholar 

  • Res 56:99–106

    Google Scholar 

  • Rastan S, Robertson EJ (1985) X-chromosome deletions in embryo-derived ( EK) cell lines associated with lack of X-chromosome inactivation. J Embryol Exp Morphol 90: 379–388

    Google Scholar 

  • Ray PF, Winston RML, Handyside AH (1997) XIST expression from the maternal X chromosome in human male preimplantation embryos at the blastocyst stage. Hum Mol Genet 6: 1323–1327

    Google Scholar 

  • Riggs AD (1990) DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Philos Trans R Soc Lond B 326: 285–297

    Article  CAS  Google Scholar 

  • Riggs AD, Pfeifer GP (1992) X-Chromosome inactivation and cell memory. Trends Genet 8: 169–174

    PubMed  CAS  Google Scholar 

  • Russell LB (1983) X-autosome translocations in the mouse: their characterization and use as tools to investigate gene inactivation and gene action. In: Sandberg AA (ed) Cytogenetics of the mammalian X chromosome, Part A. Basic mechanisms of X chromosome behaviour. Alan R Liss, New York, pp 205–250

    Google Scholar 

  • Sheardown SA, Duthie SM, Johnston CM, Newall AET, Formstone EJ, Arkell RM, Nesterova TB, Alghisi G-C, Rastan S, Brockdorff N (1997) Stabilization of Xist RNA mediates initiation of X chromosome inactivation. Cell 91: 99–107

    Article  PubMed  CAS  Google Scholar 

  • Simmler MC, Cattanach BM, Rasberry C, Rougeulle C, Avner P (1993) Mapping the murine Xce locus with ( CA)„ repeats. Mammal Genome 4: 523–530

    Google Scholar 

  • Tada T, Takagi N, Adler I-D (1993) Parental imprinting on the mouse X chromosome: effects on the early development of XO, XXY and XXX embryos. Genet Res Camb 62: 139–148

    Google Scholar 

  • Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X chromosome in the extraembryonic membranes of the mouse. Nature 256: 640–642

    Article  PubMed  CAS  Google Scholar 

  • Wakefield MJ, Keohane AM, Turner BM, Graves JAM (1997) Histone underacetylation is an ancient component of mammalian X chromosome inactivation. Proc Natl Acad Sci 94: 9665–9668

    Article  PubMed  CAS  Google Scholar 

  • Willard HF, Salz HK (1997) Remodelling chromatin with RNA. Nature 386: 228–229

    Article  PubMed  CAS  Google Scholar 

  • Wutz A, Smrzka OW, Schweifer N, Schellander K, Wagner EF, Barlow DP (1997) Imprintedexpression of the Igf2r gene depends on an intronic GpG island. Nature 389: 745–749

    Article  PubMed  CAS  Google Scholar 

  • Zuccotti M, Monk M (1995) Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X-inactivation. Nat Genet 9: 316–320

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lyon, M.F. (1999). Imprinting and X-Chromosome Inactivation. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics