Skip to main content
Log in

Relaxed Selection Among Duplicate Floral Regulatory Genes in Lamiales

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Polyploidization is a prevalent mode of genome diversification within plants. Most gene duplicates arising from polyploidization (paralogs) are typically lost, although a subset may be maintained under selection due to dosage, partitioning of gene function, or acquisition of novel functions. Because they experience selection in the presence of other duplicate loci across the genome, interactions among genes may also play a significant role in the maintenance of paralogs resulting from polyploidization. Previously, we identified duplicates of the genes LFY/FLO and AP3/DEF that directly interact in a floral regulatory pathway and are thought to be the result of ancient polyploidization in the Lamiales (> 50 mya). Although duplicates of MADS box genes including AP3/DEF are common throughout the angiosperm lineage, LFY/FLO duplicates in Lamiales are the first reported outside of tetraploid taxa. In order to explore hypotheses for the joint preservation of these interacting floral regulatory genes including novel LFY/FLO paralogs, here we clone FLO and DEF duplicates from additional Lamiales taxa and apply codon substitution models to test how selection acts on both genes following duplication. We find acceleration in the ratio of nonsynonymous-to-synonymous nucleotide substitutions for one (FLO) or both (DEF) paralogs that appears to be due to relaxed purifying selection as opposed to positive selection and shows a different pattern among functional domains of these genes. Several mechanisms are discussed that might be responsible for preservation of co-orthologs of FLO and DEF in Lamiales, including interactions among the genes of this regulatory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Aagaard J, Phillips P (2005) Accuracy and power of the likelihood ratio test for comparing evolutionary rates among genes. J Mol Evol 60:426–433

    Article  PubMed  CAS  Google Scholar 

  • Aagaard J, Willis J, Phillips P (2005) Duplication of floral regulatory genes in the Lamiales. Am J Bot 92:1284–1293

    CAS  Google Scholar 

  • Baum D, Yoon H, Oldham R (2005) Molecular evolution of the transcription factor LEAFY in Brassicaceae. Mol Phylogenet Evol 37:1–14

    Article  PubMed  CAS  Google Scholar 

  • Beardsley P, Olmstead R (2002) Redefining Phrymaceae: the placement of Mimulus, tribe Mimuleae, and Phryma. Am J Bot 89:1093–1102

    Google Scholar 

  • Bielawski J, Yang Z (2003) Maximum likelihood methods for detecting adaptive evolution after gene duplication. JSFG 3:201–212

    CAS  Google Scholar 

  • Blanc G, Wolfe K (2004a) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  Google Scholar 

  • Blanc G, Wolfe K (2004b) Divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  Google Scholar 

  • Blanc G, Hokamp K, Wolfe K (2003) A recent polyploidization superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  • Bomblies K, Wang R, Ambrose B, Schmidt R, Meeley R, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs ZFL1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395

    Article  PubMed  CAS  Google Scholar 

  • Causier B, Castillo R, Zhou J, Ingram R, Xue Y, Schwarz-Sommer Z, Davies B (2005) Evolution in action: following function in duplicated floral homeotic genes. Curr Biol 15:1508–1512

    Article  PubMed  CAS  Google Scholar 

  • Coen E, Romero J, Doyle S, Elliott R, Murphy G, Carpenter R (1990) Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63:1311–1322

    Article  PubMed  CAS  Google Scholar 

  • Conant G, Wagner A (2002) Asymmetric sequence divergence of duplicate genes. Genome Res 13:2052_2058

    Article  CAS  Google Scholar 

  • Cook J, Nowak M, Boerlijst M, Maynard-Smith J (1997) Evolutionary origins and maintenance of redundant gene expression during metazoan development. Trends Genet 13:360–364

    Article  Google Scholar 

  • Cronk Q (2001) Plant evolution and development in a post-genomic context. Nat Rev Genet 2:607–619

    Article  PubMed  CAS  Google Scholar 

  • Dermitzakis E, Clark A (2001) Differential selection after duplication in mammalian developmental genes. Mol Biol Evol 18:557–562

    PubMed  CAS  Google Scholar 

  • Fishman L, Kelly A, Morgan E, Willis J (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716

    PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett F, Amores A, Yan Y, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  • Frohlich M, Parker D (2000) The mostly male theory of flower evolutionary origins: from genes to fossils. Syst Bot 25:155–170

    Article  Google Scholar 

  • Gocal G, King R, Blundell C, Schwartz W, Andersen C, Weigel D (2001) Evolution of floral meristem identity genes: analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125:1788–1801

    Article  PubMed  CAS  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    PubMed  CAS  Google Scholar 

  • Hileman L, Baum D (2003) Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Mol Biol Evol 20:591–600

    Article  PubMed  CAS  Google Scholar 

  • Hill T, Day C, Zondio S, Thackeray A, Irish V (1998) Discrete spatial and temporal cis-acting elements regulate transcription of the Arabidopsis floral homeotic gene APETALA3. Development 125:1711–1721

    PubMed  CAS  Google Scholar 

  • Hughes A (1999) Adaptive evolution of genes and genomes. Oxford University Press, Oxford

    Google Scholar 

  • Ingram G, Doyle S, Carpenter R, Schultz E, Simon R, Coen E (1997) Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. EMBO J 16:6521–6534

    Article  PubMed  CAS  Google Scholar 

  • Jack T, Brockman L, Meyerowitz E (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  PubMed  CAS  Google Scholar 

  • Kelly A, Willis J (1998) Polymorphic microsatellite loci in Mimulus guttatus and related species. Mol Ecol 1998:769–774

    Article  Google Scholar 

  • Kramer E, Dorit R, Irish V (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783

    PubMed  CAS  Google Scholar 

  • Kramer E, Di Stilio V, Schluter P (2003) Complex patterns of gene duplication in the AP3 and PI lineages of the Ranunculaceae. Int J Plant Sci 164:1–11

    Article  CAS  Google Scholar 

  • Kush A, Brunelle A, Shevell D, Chua N (1993) The cDNA sequence of two MADS box proteins in Petunia. Plant Physiol 102:1051–1052

    Article  PubMed  CAS  Google Scholar 

  • Lamb R, Hill T, Tan Q, Irish V (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086

    PubMed  CAS  Google Scholar 

  • Levin D (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Lynch M, Conery J (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Conery J (2001) Gene duplication and evolution. Science 293:1551

    Article  Google Scholar 

  • Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454–5459

    Article  PubMed  CAS  Google Scholar 

  • Mena M, Ambrose B, Meeley R, Briggs S, Yanofsky M, Schmidt R (1996) Diversification of C-function activity in maize flower development. Science 274:1537–1540

    Article  PubMed  CAS  Google Scholar 

  • Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J 20:685–693

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Purugganan M (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687

    Article  PubMed  CAS  Google Scholar 

  • Moore R, Purugganan M (2005) Molecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana. Mol Biol Evol 22:91–103

    Article  PubMed  CAS  Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    PubMed  CAS  Google Scholar 

  • Olmstead R, dePamphilis C, Wolfe A, Young N, Elisons W, Reeves P (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361

    PubMed  CAS  Google Scholar 

  • Otto S, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34:401–437

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Ditta G, Baumann E, Wisman E, Yanofsky M (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Reichman J, Meyerowitz E (1997) MADS domain proteins in plant development. J Biol Chem 378:1079–1101

    Article  Google Scholar 

  • Sommer H, Beltran J, Huijser P, Pape H, Lonnig W, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613

    PubMed  CAS  Google Scholar 

  • Souer E, van der Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125:733–742

    PubMed  CAS  Google Scholar 

  • Stebbins G (1971) Processes of organic evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Stellari G, Jaramillo M, Kramer E (2004) Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol Biol Evol 21:506–519

    Article  PubMed  CAS  Google Scholar 

  • Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (and other methods), 4.0 Beta for Macintosh. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim J, Munster T, Winter K, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  CAS  Google Scholar 

  • Uimari A, Kotilainen M, Elomaa P, Yu D, Albert V, Teeri T (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. Proc Natl Acad Sci USA 101:15817–15822

    Article  PubMed  CAS  Google Scholar 

  • Veita R (2003) Nonlinear effects in macromolecular assembly and dosage sensitivity. J Theor Biol 220:19–25

    Article  CAS  Google Scholar 

  • Walsh J (1995) How often do duplicated genes evolve new functions? Genetics 139:421–428

    PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz E (1993) Activation of floral hom eotic genes in Arabidopsis. Science 261:1723–1726

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Alvarez J, Smyth D, Yanofsky M, Meyerowitz E (1992) Leafy controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  PubMed  CAS  Google Scholar 

  • Wendel J (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Wikstrom N, Savolainen V, Chase M (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  CAS  Google Scholar 

  • William D, Su Y, Smith M, Lu M, Baldwin D, Wagner D (2004) Genomic identification of direct ta rget genes of LFY. Proc Natl Acad Sci USA 101:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (1997) PAML: a program for package for phylogenetic analysis by maximum likelihood. CABIOS 15:555–556

    Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    PubMed  CAS  Google Scholar 

  • Yang Z (2001) Adaptive molecular evolution. In: Balding D, Bishop M, Cannings C (eds). Handbook of statistical genetics. Wiley, New York, pp 327–350

    Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    PubMed  CAS  Google Scholar 

  • Yang Z, Swanson W (2002) Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19:49–57

    PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Petersen A (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  Google Scholar 

  • Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479

    Article  PubMed  CAS  Google Scholar 

  • Zik M, Irish V (2003) Flower development: initiation, differentiation, and diversification. Annu Rev Cell Dev Biol 19:19–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an NSF IGERT predoctoral fellowship and NSF dissertation improvement grant (DEB-0105176) to J.E.A., an NSF grant (DEB-0075704) to J.H.W., and an NIH grant to P.C.P. (GM54185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan E. Aagaard.

Additional information

[Reviewing Editor: Dr. Yves Van de Peer]

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aagaard, J.E., Willis, J.H. & Phillips, P.C. Relaxed Selection Among Duplicate Floral Regulatory Genes in Lamiales. J Mol Evol 63, 493–503 (2006). https://doi.org/10.1007/s00239-005-0306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0306-x

Keywords

Navigation