Skip to main content
Log in

Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: unveiling the role of fatty acids as a model protocell membrane

  • Letter to the Editor
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Fundamental research at the interface of chemistry and biology has the potential to shine light on the question of how living cells can be synthesized from inanimate matter thereby providing plausible pathways for the emergence of cellular life. Compartmentalization of different biochemical reactions within a membrane bound water environment is considered an essential first step in any origin of life pathway. It has been suggested that fatty acid-based vesicles can be considered a model protocell having the potential for change via Darwinian evolution. As such, protocell models have the potential to assist in furthering our understanding of the origin of life in the laboratory. Fatty acids, both by themselves and in mixtures with other amphiphiles, can form different self-assembled structures depending on their surroundings. Recent studies of fatty acid-based membranes have suggested likely pathways of protocell growth, division and membrane permeabilisation for the transport of different nutrients, such as nucleotides across the membrane. In this review, different dynamic processes related to the growth and division of the protocell membrane are discussed and possible pathways for transition of the protocell to the modern cell are explored. These areas of research may lead to a better understanding of the synthesis of artificial cell-like entities and thus herald the possibility of creating new form of life distinct from existing biology.

Table of Content (TOC) only

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Adamala K, Szostak JW (2013a) Competition between model protocells driven by an encapsulated catalyst. Nat Chem 5:495–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adamala K, Szostak JW (2013b) Nonenzymatic template-directed RNA synthesis inside model protocells. Science 342:1098–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arai N, Yoshimoto Y, Yasuoka K, Ebisuzaki T (2016) Self-assembly behaviours of primitive and modern lipid membrane solutions: a coarse-grained molecular simulation study. Phys Chem Chem Phys 18:19426–19432

    CAS  PubMed  Google Scholar 

  • Bachmann PA, Walde P, Luisi PL, Lang J (1990) Self-replicating reverse micelles and chemical autopoiesis. J Am Chem Soc 112:8200–8201

    CAS  Google Scholar 

  • Bar-Ziv R, Moses E (1994) Instability and “pearling” states produced in tubular membranes by competition of curvature and tension. Phys Rev Lett 73:1392–1395

    CAS  PubMed  Google Scholar 

  • Berclaz N, Muller M, Walde P, Luisi PL (2001) Growth and transformation of vesicles studied by ferritin labelling and cryotransmission electron microscopy. J Phys Chem B 105:1056–1064

    CAS  Google Scholar 

  • Bhattacharya A, Devaraj NK (2019) Tailoring the shape and size of artificial cells. ACS Nano 13:7396–7401

    CAS  PubMed  Google Scholar 

  • Bhattacharya A, Brea RJ, Niederholtmeyer H, Devaraj NK (2019) A minimal biochemical route towards de novo formation of synthetic phospholipid membranes. Nat Commun 10:300

    PubMed  PubMed Central  Google Scholar 

  • Blain JC, Szostak JW (2014) Progress toward synthetic cells. Annu Rev Biochem 83:11.1–11.26

    Google Scholar 

  • Blochliger E, Blocher M, Walde P, Luisi PL (1998) Matrix effect in the size distribution of fatty acid vesicles. J Phys Chem B 102:10383–10390

    Google Scholar 

  • Blumenthal R, Clague MJ, Durell SR, Epand RM (2003) Membrane fusion. Chem Rev 103:53–70

    CAS  PubMed  Google Scholar 

  • Budin I, Szostak JW (2010) Expanding roles for diverse physical phenomena during the origin of life. Annu Rev Biophys 39:245–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budin I, Szostak JW (2011) Physical effects underlying the transition from primitive to modern cell membranes. Proc Natl Acad Sci USA 108:5249–5254

    CAS  PubMed  Google Scholar 

  • Budin I, Prwyes N, Zhang N, Szostak JW (2014) Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. Biophys J 107:1582–1590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caschera F, de la Serna JB, Löffler PMG, Rasmussen TE, Hanczyc MM, Bagatolli LA, Monnard PA (2011) Stable vesicles composed of monocarboxylic or dicarboxylic fatty acids and trimethylammonium amphiphiles. Langmuir 27:14078–14090

    CAS  PubMed  Google Scholar 

  • Chen IA, Szostak JW (2004a) A kinetic study of the growth of fatty acid vesicles. Biophys J 87:988–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IA, Szostak JW (2004b) Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. Proc Natl Acad Sci U S A 101:7965–7970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen IA, Walde P (2010) From self-assembled vesicles to protocells. Cold Spring Harb Perspect Biol 2:1–13

    Google Scholar 

  • Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiarabelli C, Stanoand P, Luisi PL (2013) Chemical synthetic biology: a mini-review. Front Microbiol 4:1–7

    Google Scholar 

  • Cistola DP, Hamilton JA, Jackson D, Small DM (1988) Ionization and phase behavior of fatty acids in water: application of the Gibbs phase rule. Biochemistry 27:1881–1888

    CAS  PubMed  Google Scholar 

  • Coveney PV, Swadling JB, Wattis JAD, Greenwell HC (2012) Theory, modelling and simulation in origins of life studies. Chem Soc Rev 41:5430–5446

    CAS  PubMed  Google Scholar 

  • Deamer DW (1985) Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317:792–794

    CAS  Google Scholar 

  • Douliez JP (2006) Self-assembly of fatty acid-alkylboladiamine salts. Langmuir 22:622–627

    CAS  PubMed  Google Scholar 

  • Dworkin LP, Deamer DW, Sandford SA, Allamandola LJ (2001) Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc Natl Acad Sci U S A 98:815–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dzieciol AJ, Mann S (2012) Designs for life: protocell models in the laboratory. Chem Soc Rev 41:79–85

    CAS  PubMed  Google Scholar 

  • Ediss BS, Mirazo KR, Mavelli F, Sole RV (2014) Modelling lipid competition dynamics in heterogeneous protocell populations. Sci Rep 4:1–11

    Google Scholar 

  • Fameau AL, Arnould A, Saint-Jalmes A (2014) Responsive self-assemblies based on fatty acids. Curr Opin Colloid Interface Sci 19:471–479

    CAS  Google Scholar 

  • Fameau AL, Cousin F, Jalmes AS (2017) Morphological transition in fatty acid self-assemblies: a process driven by the interplay between the chain-melting and surface- melting process of the hydrogen bonds. Langmuir 33:12943–12951

    CAS  PubMed  Google Scholar 

  • Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR et al (1995) The minimal gene complement of mycoplasma genitalium. Science 270:397–404

    CAS  PubMed  Google Scholar 

  • Hanczyc MM, Fujikawa SM, Szostak JW (2003) Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302:618–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hentrich C, Szostak JW (2014) Controlled growth of filamentous fatty acid vesicles under flow. Langmuir 30:14916–14925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero TR, Fai TG, Mahadevan L (2019) Dynamics of growth and form in prebiotic vesicles. Phys Rev Lett 123:038102

    Google Scholar 

  • Janke JJ, Bennett WFD, Tieleman DP (2014) Oleic acid phase behavior from molecular dynamics simulations. Langmuir 30:10661–10667

    CAS  PubMed  Google Scholar 

  • Jimenez R, Fleming GR, Kumar PV, Maroncelli M (1994) Femtosecond solvation dynamics of water. Nature 369:471–473

    CAS  Google Scholar 

  • Joyce GF, Szostak JW (2018) Protocells and RNA self-replication. Cold Spring Harb Perspect Biol 10:a034801

    PubMed  PubMed Central  Google Scholar 

  • Kamp F, Zakim D, Zhang F, Noy N, Hamilton JA (1995) Fatty acid flip-flop in phospholipid bilayers is extremely fast. Biochemistry 34:11928–11937

    CAS  PubMed  Google Scholar 

  • Kampf JP, Cupp D, Kleinfeld AM (2006) Different mechanisms of free fatty acid flip-flop and dissociation revealed by temperature and molecular species dependence of transport across lipid vesicles. J Biol Chem 281:21566–21574

    CAS  PubMed  Google Scholar 

  • Kanicky JR, Shah DO (2003) Effect of premicellar aggregation on the pKa of fatty acid soap solutions. Langmuir 19:2034–2038

    CAS  Google Scholar 

  • Kundu N, Banerjee P, Dutta R, Kundu S, Saini RK, Halder M, Sarkar N (2016) Proton transfer pathways of 2,2′-bipyridine-3,3′-diol in pH responsive fatty acid self-assemblies: multiwavelength fluorescence lifetime imaging in a single vesicle. Langmuir 32:13284–13295

    CAS  PubMed  Google Scholar 

  • Kundu N, Banerjee P, Kundu S, Dutta R, Sarkar N (2017a) Sodium chloride triggered the fusion of vesicle composed of fatty acid modified protic ionic liquid: a new insight into the membrane fusion monitored through fluorescence lifetime imaging microscopy. J Phys Chem B 121:24–34

    CAS  PubMed  Google Scholar 

  • Kundu N, Roy S, Mukherjee D, Maiti TK, Sarkar N (2017b) Unveiling the interaction between fatty-acid-modified membrane and hydrophilic imidazolium-based ionic liquid: understanding the mechanism of ionic liquid cytotoxicity. J Phys Chem B 121:8162–8170

    CAS  PubMed  Google Scholar 

  • Kundu N, Banik D, Sarkar N (2018) Self-assembly of amphiphiles into vesicles and fibrils: investigation of structure and dynamics using spectroscopy and microscopy techniques. Langmuir 34:11637–11654

    CAS  PubMed  Google Scholar 

  • Lawless JG, Yuen GU (1979) Quantification of monocarboxylic acids in the murchison carbonaceous meteorite. Nature 282:396–398

    CAS  Google Scholar 

  • Lonchin S, Luisi PL, Walde P, Robinson BHA (1999) Matrix effect in mixed phospholipid/fatty acid vesicle formation. J Phys Chem B 103:10910–10916

    CAS  Google Scholar 

  • Luisi PL (2006) The emergence of life Cambridge University Press.

    Google Scholar 

  • Luisi PL, Stano P (2011) The minimal cell. the biophysics of cell compartment and the origin of cell functionality, 1st edn. Springer, Berlin

    Google Scholar 

  • Luisi PL, Vonmont-Bachmann P, Fresta M, Walde P, Wehrli E (1993) Self-reproduction of micelles and liposomes and the transition to life. J Liposome Res 3:631–638

    CAS  Google Scholar 

  • Mally M, Peterlin P, Svetina S (2013) Partitioning of oleic acid into phosphatidylcholine membranes is amplified by strain. J Phys Chem B 117:12086–12094

    CAS  PubMed  Google Scholar 

  • Mann S (2013) The origins of life: old problems, new chemistries. Angew Chem Int Ed 52:155–162

    CAS  Google Scholar 

  • Mansy SS, Szostak JW (2008) Thermostability of model protocell membranes. Proc Natl Acad Sci USA 105:13351–13355

    CAS  PubMed  Google Scholar 

  • Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW (2008) Template-directed synthesis of a genetic polymer in a model protocell. Nature 454:122–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markvoort AJ, Pfleger N, Staffhorst R, Hilbers PAJ, Santen RAV, Killian JA, Kruijff B (2010) Self-reproduction of fatty acid vesicles: a combined experimental and simulation study. Biophys J 99:1520–1528

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by fischer-tropsch-type reactions. Orig Life Evol Biosph 29:153–166

    CAS  PubMed  Google Scholar 

  • Meierhenrich UJ, Filippi JJ, Meinert C, Vierling P, Dworkin JP (2010) On the origin of primitive cells: from nutrient intake to elongation of encapsulated nucleotides. Angew Chem Int Ed 49:3738–3750

    CAS  Google Scholar 

  • Mondal D, Dutta R, Banerjee P, Mukherjee D, Maiti TK, Sarkar N (2019) Modulation of membrane fluidity performed on model phospholipid membrane and live cell membrane: revealing through spatiotemporal approaches of FLIM, FAIM and TRFS. Anal Chem 91:4337–4345

    CAS  PubMed  Google Scholar 

  • Monnard PA, Deamer DW (2002) Membrane self-assembly processes: steps toward the first cellular life. Anat Rec 268:196–207

    CAS  PubMed  Google Scholar 

  • Morigaki K, Walde P (2007) Fatty acid vesicles. Curr Opin Colloid Interface Sci 12:75–80

    CAS  Google Scholar 

  • Morigaki K, Dallavalle S, Walde P, Colonna S, Luisi PL (1997) Autopoietic self-reproduction of chiral fatty acid vesicles. J Am Chem Soc 119:292–301

    CAS  Google Scholar 

  • Nandi N, Bhattacharyya K, Bagchi B (2000) Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem Rev 100:2013–2046

    CAS  PubMed  Google Scholar 

  • Oparin AI (1938) The origin of life. Macmillan, New York

    Google Scholar 

  • Pal SK, Sukul D, Mandal D, Bhattacharyya K (2000) Solvation dynamics of DCM in lipid. J Phys Chem B 104:4529–4531

    CAS  Google Scholar 

  • Peterlina P, Arrigler V, Kogej K, Svetina S, Walde P (2009) Growth and shape transformations of giant phospholipid vesicles upon interaction with an aqueous oleic acid suspension. Chem Phys Lipids 159:67–76

    Google Scholar 

  • Piedrafita G, Monnard PA, Mavelli F, Mirazo KR (2017) Permeability-driven selection in a semi-empirical protocell model: the roots of prebiotic systems evolution. Sci Rep 7:1–10

    CAS  Google Scholar 

  • Rogerson ML, Robinson BH, Bucak S, Walde P (2006) Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids Surf, B 48:24–34

    CAS  Google Scholar 

  • Roy A, Dutta R, Kundu N, Banik D, Sarkar N (2016) A comparative study of the influence of sugars sucrose, trehalose, and maltose on the hydration and diffusion of DMPC lipid bilayer at complete hydration: investigation of structural and spectroscopic aspect of lipid–sugar interaction. Langmuir 32:5124–5134

    CAS  PubMed  Google Scholar 

  • Roy S, Mandal S, Banerjee P, Sarkar N (2018) Modification of fatty acid vesicle using an imidazolium-based surface active ionic liquid: a detailed study on its modified properties using spectroscopy and microscopy techniques. J Chem Sci 130:1–14

    CAS  Google Scholar 

  • Schrum JP, Zhu TF, Szostak JW (2010) The origins of cellular life. Cold Spring Harb Perspect Biol 2:1–15

    Google Scholar 

  • Sen P, Ghosh S, Mondal SK, Sahu K, Roy D, Bhattacharyya K, Tominaga K (2006) A femtosecond study of excitation-wavelength dependence of solvation dynamics in a vesicle. Chem Asian J 1–2:188–194

    Google Scholar 

  • Shechner DM, Bartel DP (2011) The structural basis of RNA catalysed RNA polymerization. Nat Struct Mol Biol 18:1036–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza TP, Holzer M, Stano P, Steiniger F, May S, Schubert R, Fahr A, Luisi PL (2015) New insights into the growth and transformation of vesicles: a free-flow electrophoresis study. J Phys Chem B 119:12212–12223

    Google Scholar 

  • Stano P, Luisi PL (2010) Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem Commun 46:3639–3653

    CAS  Google Scholar 

  • Stevenson SA, Blanchard GJ (2006) Investigating internal structural differences between micelles and unilamellar vesicles of decanoic acid/sodium decanoate. J Phys Chem B 110:13005–13010

    CAS  PubMed  Google Scholar 

  • Suga K, Yokoi T, Kondo D, Hayashi K, Morita S, Okamoto Y, Shimanouchi T, Umakoshi H (2014) Systematical characterization of phase behaviors and membrane properties of fatty acid/didecyldimethylammonium bromide vesicles. Langmuir 30:12721–12728

    CAS  PubMed  Google Scholar 

  • Suga K, Kondo D, Otsuka Y, Okamoto Y, Umakoshi H (2016) Characterization of aqueous oleic acid/oleate dispersions by fluorescent probes and raman spectroscopy. Langmuir 32:7606–7612

    CAS  PubMed  Google Scholar 

  • Svetina S (2009) Vesicle budding and the origin of cellular life. Chem Phys Chem 10:2769–2776

    CAS  PubMed  Google Scholar 

  • Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409:387–390

    CAS  PubMed  Google Scholar 

  • Tang TYD, Hak CRC, Thompson AJ, Kuimova MK, Williams DS, Perriman AW, Mann S (2014) Fatty acid membrane assembly on coacervated microdroplets as a step towards a hybrid protocell model. Nat Chem 6:527–533

    Google Scholar 

  • Theander K, Pugh RJ (2001) The influence of pH and temperature on the equilibrium and dynamic surface tension of aqueous solutions of sodium oleate. J Colloid Interface Sci 239:209–216

    CAS  PubMed  Google Scholar 

  • Walde P, Wick R, Fresta M, Mangone A, Luisi PL (1994) Autopoietic self-reproduction of fatty acid vesicles. J Am Chem Soc 116:11649–11654

    CAS  Google Scholar 

  • Wei C, Pohorille A (2014) Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism. J Phys Chem B 118:12919–12926

    CAS  PubMed  Google Scholar 

  • Wick R, Walde P, Luisi PL (1995) Light microscopic investigations of the autocatalytic self-reproduction of giant vesicles. J Am Chem Soc 117:1435–1436

    CAS  Google Scholar 

  • Xu W, Song A, Dong S, Chen J, Hao JA (2013) Systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions. Langmuir 29:12380–12388

    CAS  PubMed  Google Scholar 

  • Zhu TF, Szostak JW (2009) Coupled growth and division of model protocell membranes. J Am Chem Soc 131:5705–5713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu TF, Adamala K, Zhang N, Szostak JW (2012) Photochemically driven redox chemistry induces protocell membrane pearling and division. Proc Natl Acad Sci USA 109:9828–9832

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to IIT Kharagpur for providing the research facilities and the reviewers of Biophysical Reviews for improving the content of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niloy Kundu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, N., Mondal, D. & Sarkar, N. Dynamics of the vesicles composed of fatty acids and other amphiphile mixtures: unveiling the role of fatty acids as a model protocell membrane. Biophys Rev 12, 1117–1131 (2020). https://doi.org/10.1007/s12551-020-00753-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00753-x

Keywords

Navigation